
JavaMessageService
TheJMSAPI isanAPIforaccessingenterprisemessagingsystems
fromJavaprograms.

Version1.0.2b August27,2001

Pleasesendtechnicalcommentsonthisspecificationto:
jets-jms@eng.sun.com

Pleasesendproductandbusinessquestionsto:
jets-jms-business@eng.sun.com

MarkHapner,DistinguishedEngineer
RichBurridge,StaffEngineer
RahulSharma,SeniorStaffEngineer
JosephFialli,SeniorStaffEngineer
SunMicrosystems,JavaSoftware
901 San Antonio Road

Palo Alto, CA 94303 U.S.A.

Java™ Message Service Specification ("Specification")
Version: 1.0.2b
Status: FCS
Release: August 27, 2001

Copyright 2001 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions of this license and the Export Control
Guidelines as set forth in the Terms of Use on Sun’s website. By viewing, downloading or otherwise copying the Specification, you agree
that you have read, understood, and will comply with all of the terms and conditions set forth herein..

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited
license (without the right to sublicense) under Sun’s intellectual property rights to review the Specification internally solely for the
purpose of designing and developing your Java applets and applications intended to run on the Java platform. Other than this limited
license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual property. The Specification contains the
proprietary information of Sun and may only be used in accordance with the license terms set forth herein. This license will terminate
immediately without notice from Sun if you fail to comply with any provision of this license. Upon termination or expiration of this
license, you must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, Jini, J2EE, JavaServerPages, Enterprise JavaBeans, JavaCompatible, JDK, JDBC, JavaBeans, JavaMail,
Write Once, Run Anywhere, and Java Naming and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the
Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS
OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java applications or applets; and/or (iii) any claims that later versions or releases of any
Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor
or subcontractor (at any tier), then the Government’s rights in the Software and accompanying documentation shall be only as set forth in
this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with
the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and test suites thereof.

(LFI#95820/Form ID#011801)

Contents
1. Introduction . 13

1.1 Abstract . 13

1.2 Overview . 13

1.2.1 Is This a Mail API? . 14

1.2.2 Existing Messaging Systems . 14

1.2.3 JMS Objectives . 15

1.2.3.1 JMS Provider . 15

1.2.3.2 JMS Messages . 15

1.2.3.3 JMS Domains . 15

1.2.3.4 Portability . 16

1.2.4 What JMS Does Not Include . 16

1.3 What Is Required by JMS . 17

1.4 Relationship to Other JavaSoft Enterprise APIs 17

1.4.1 Java DataBase Connectivity (JDBCTM) 17

1.4.2 JavaBeansTM Components . 17

1.4.3 Enterprise JavaBeansTM Components 17

1.4.4 Java Transaction API (JTA) . 18

1.4.5 Java Transaction Service (JTS). 18

1.4.6 Java Naming and Directory InterfaceTM (JNDI) 18

2. Architecture. 19

2.1 Overview. 19

2.2 What is a JMS Application? . 19

2.3 Administration . 20
v

2.4 Two Messaging Styles . 20

2.5 JMS Interfaces . 21

2.6 Developing a JMS Application 22

2.6.1 Developing a JMS Client . 22

2.7 Security . 22

2.8 Multithreading . 23

2.9 Triggering Clients . 23

2.10 Request/Reply . 24

3. JMS Message Model . 25

3.1 Background . 25

3.2 Goals . 25

3.3 JMS Messages . 26

3.4 Message Header Fields . 26

3.4.1 JMSDestination . 26

3.4.2 JMSDeliveryMode . 27

3.4.3 JMSMessageID . 27

3.4.4 JMSTimestamp . 27

3.4.5 JMSCorrelationID. 28

3.4.6 JMSReplyTo. 29

3.4.7 JMSRedelivered . 29

3.4.8 JMSType. 29

3.4.9 JMSExpiration. 30

3.4.10 JMSPriority . 30

3.4.11 How Message Header Values Are Set 31

3.4.12 Overriding Message Header Fields 31

3.5 Message Properties . 31

3.5.1 Property Names . 32

3.5.2 Property Values . 32

3.5.3 Using Properties . 32

3.5.4 Property Value Conversion . 32

3.5.5 Property Values as Objects . 33

3.5.6 Property Iteration . 33

3.5.7 Clearing a Message’s Property Values. 34

3.5.8 Nonexistent Properties . 34

3.5.9 JMS Defined Properties . 34

3.5.10 Provider-Specific Properties . 36

3.6 Message Acknowledgment . 36
vi Java Message Service—August 27, 2001

3.7 The Message Interface . 36

3.8 Message Selection . 37

3.8.1 Message Selector . 37

3.8.1.1 Message Selector Syntax . 38

3.8.1.2 Null Values . 41

3.8.1.3 Special Notes . 42

3.9 Access to Sent Messages . 43

3.10 Changing the Value of a Received Message 43

3.11 JMS Message Body . 44

3.11.1 Clearing a Message Body . 44

3.11.2 Read-Only Message Body . 44

3.11.3 Conversions Provided by StreamMessage and

MapMessage . 45

3.11.4 Messages for Non-JMS Clients 46

3.12 Provider Implementations of JMS Message Interfaces 47

4. JMS Common Facilities . 49

4.1 Overview. 49

4.2 Administered Objects . 49

4.2.1 Destination . 50

4.2.2 ConnectionFactory . 50

4.3 Connection . 51

4.3.1 Authentication . 51

4.3.2 Client Identifier . 51

4.3.3 Connection Setup . 52

4.3.4 Pausing Delivery of Incoming Messages. 53

4.3.5 Closing a Connection. 53

4.3.6 Sessions . 54

4.3.7 ConnectionMetaData . 55

4.3.8 ExceptionListener. 55

4.4 Session . 55

4.4.1 Closing a Session . 56

4.4.2 MessageProducer and MessageConsumer Creation . 57

4.4.3 Creating Temporary Destinations 57

4.4.4 Creating Destinations . 57

4.4.5 Optimized Message Implementations 58

4.4.6 Conventions for Using a Session 58

4.4.7 Transactions . 59
Contents vii

4.4.8 Distributed Transactions . 60

4.4.9 Multiple Sessions . 60

4.4.10 Message Order . 61

4.4.10.1 Order of Message Receipt . 61

4.4.10.2 Order of Message Sends . 61

4.4.11 Message Acknowledgment . 62

4.4.12 Duplicate Delivery of Messages 63

4.4.13 Duplicate Production of Messages. 63

4.4.14 Serial Execution of Client Code 63

4.4.15 Concurrent Message Delivery 64

4.5 MessageConsumer . 64

4.5.1 Synchronous Delivery . 64

4.5.2 Asynchronous Delivery. 65

4.6 MessageProducer . 65

4.7 Message Delivery Mode . 66

4.8 Message Time-To-Live . 67

4.9 Exceptions . 67

4.10 Reliability . 67

5. JMS Point-to-Point Model . 69

5.1 Overview. 69

5.2 Queue Management . 69

5.3 Queue . 70

5.4 TemporaryQueue . 70

5.5 QueueConnectionFactory . 70

5.6 QueueConnection . 70

5.7 QueueSession . 70

5.8 QueueReceiver . 71

5.9 QueueSender . 71

5.10 QueueBrowser . 71

5.11 QueueRequestor . 72

5.12 Reliability . 72

6. JMS Publish/Subscribe Model . 73

6.1 Overview. 73

6.2 Pub/Sub Latency . 73

6.3 Durable Subscription . 74

6.4 Topic Management . 74
viii Java Message Service—August 27, 2001

6.5 Topic . 75

6.6 TemporaryTopic . 75

6.7 TopicConnectionFactory . 75

6.8 TopicConnection . 76

6.9 TopicSession . 76

6.10 TopicPublisher . 76

6.11 TopicSubscriber . 76

6.11.1 Durable TopicSubscriber . 77

6.12 Recovery and Redelivery . 77

6.13 Administering Subscriptions . 78

6.14 TopicRequestor . 78

6.15 Reliability . 78

7. JMS Exceptions. 79

7.1 Overview. 79

7.2 The JMSException . 79

7.3 Standard Exceptions . 80

8. JMS Application Server Facilities . 83

8.1 Overview. 83

8.2 Concurrent Processing of a Subscription’s Messages 83

8.2.1 Session . 84

8.2.2 ServerSession . 84

8.2.3 ServerSessionPool . 84

8.2.4 ConnectionConsumer . 85

8.2.5 How a ConnectionConsumer Uses a ServerSession . 85

8.2.6 How an Application Server Implements a

ServerSession . 86

8.2.7 The Result . 86

8.3 XAConnectionFactory . 89

8.4 XAConnection . 89

8.5 XASession . 89

8.6 JMS Application Server Interfaces 90

9. JMS Sample Code . 91

9.1 Point-to-Point Setup . 91

9.1.1 Getting a QueueConnectionFactory. 91

9.1.2 Getting a Message Queue . 92
Contents ix

9.1.3 Getting a QueueConnection . 92

9.1.4 Getting a QueueSession. 92

9.1.5 Getting a QueueSender . 93

9.1.6 Getting a QueueReceiver. 93

9.1.7 Start Delivery of Messages . 93

9.2 Publish/Subscribe Messaging Domain Setup 93

9.2.1 Getting a TopicConnectionFactory. 94

9.2.2 Getting a Message Topic . 94

9.2.3 Getting a TopicConnection . 94

9.2.4 Getting a TopicSession. 94

9.2.5 Getting a TopicSubscriber . 95

9.2.6 Getting a TopicPublisher . 96

9.2.7 Start Delivery of Messages . 96

9.3 JMS Message Types . 96

9.3.1 Using a BytesMessage . 96

9.3.2 Using a TextMessage . 97

9.3.3 Using a MapMessage . 97

9.3.4 Using a StreamMessage. 98

9.3.5 Using an ObjectMessage . 99

9.4 Point-to-Point Sending and Receiving 99

9.4.1 Sending a Message . 99

9.4.2 Receiving a Message . 100

9.5 Publish/Subscribe Sending and Receiving 100

9.5.1 Sending a Message . 100

9.5.2 Receiving a Message . 100

9.6 Unpacking messages . 100

9.6.1 Unpacking a BytesMessage. 101

9.6.2 Unpacking a TextMessage. 101

9.6.3 Unpacking a MapMessage . 101

9.6.4 Unpacking a StreamMessage . 101

9.6.5 Unpacking an ObjectMessage. 102

9.7 Message Selection . 102

9.7.1 Point-To-Point QueueReceiver Setup 102

9.7.2 Publish/Subscribe TopicSubscriber Setup 103

10. Issues . 105

10.1 Resolved Issues. 105

10.1.1 JDK 1.1.x Compatibility. 105
x Java Message Service—August 27, 2001

10.1.2 Distributed Java Event Model 105

10.1.3 Should the Two JMS Domains, PTP and Pub/Sub,

be merged? . 105

10.1.4 Should JMS Specify a Set of JMS JavaBeans? 106

10.1.5 Alignment with the CORBA Notification Service . . . 106

10.1.6 Should JMS Provide End-to-end Synchronous

Message Delivery and Notification of Delivery? 106

10.1.7 Should JMS Provide a Send-to-List Mechanism? 107

10.1.8 Should JMS Provide Subscription Notification?. 107

11. Change History. 109

11.1 Version 1.0.1 . 109

11.1.1 JMS Exceptions . 109

11.2 Version 1.0.2 . 109

11.2.1 The Multiple Topic Subscriber Special Case 109

11.2.2 Message Selector Comparison of Exact and Inexact

Numeric Values . 110

11.2.3 Connection and Session Close 110

11.2.4 Creating a Session on an Active Connection 110

11.2.5 Delivery Mode and Message Retention. 110

11.2.6 The ‘single thread’ Use of Sessions 110

11.2.7 Clearing a Message’s Properties and Body 111

11.2.8 Message Selector Numeric Literal Syntax 111

11.2.9 Comparison of Boolean Values in Message Selectors 111

11.2.10 Order of Messages Read from a Queue 111

11.2.11 Null Values in Messages . 111

11.2.12 Closing Constituents of Closed Connections and

Sessions . 111

11.2.13 The Termination of a Pending Receive on Close 111

11.2.14 Incorrect Entry in Stream and Map Message

Conversion Table . 112

11.2.15 Inactive Durable Subscription 112

11.2.16 Read-Only Message Body . 112

11.2.17 Changing Header Fields of a Received Message 112

11.2.18 Null/Missing Message Properties and Message Fields 112

11.2.19 JMS Source Errata. 112

11.2.20 JMS Source JavaDoc Errata . 113

11.2.21 JMS Source JavaDoc Clarifications. 113
Contents xi

11.3 Version 1.0.2b . 114

11.3.1 JMS API Specification, version 1.0.2: Errata and

Clarifications. 115

11.3.2 JMS API Javadoc, version 1.0.2a: Major Errata. 116

11.3.2.1 Corrections of Mistakes . 116

11.3.2.2 Reconciliations between the Specification and the

Javadoc . 117

11.3.3 JMS API Javadoc, version 1.0.2a: Lesser Errata 117
xii Java Message Service—August 27, 2001

Introduction 1
1.1 Abstract
This specification describes the objectives and functionality of the JavaTM

Message Service (JMS).

JMS provides a common way for Java programs to create, send, receive and

read an enterprise messaging system’s messages.

1.2 Overview
Enterprise messaging products (or as they are sometimes called, Message

Oriented Middleware products) are becoming an essential component for

integrating intra-company operations. They allow separate business

components to be combined into a reliable, yet flexible, system.

In addition to the traditional MOM vendors, enterprise messaging products are

also provided by several database vendors and a number of internet related

companies.

Java language clients and Java language middle tier services must be capable

of using these messaging systems. JMS provides a common way for Java

language programs to access these systems.

JMS is a set of interfaces and associated semantics that define how a JMS client

accesses the facilities of an enterprise messaging product.
13

1

Since messaging is peer-to-peer, all users of JMS are referred to generically as

clients. A JMS application is made up of a set of application defined messages

and a set of clients that exchange them.

Products that implement JMS do this by supplying a provider that implements

the JMS interfaces.

1.2.1 Is This a Mail API?

The term messaging is quite broadly defined in computing. It is used for

describing various operating system concepts; it is used to describe email and

fax systems; and here, it is used to describe asynchronous communication

between enterprise applications.

Messages, as described here, are asynchronous requests, reports or events that

are consumed by enterprise applications, not humans. They contain vital

information needed to coordinate these systems. They contain precisely

formatted data that describe specific business actions. Through the exchange of

these messages each application tracks the progress of the enterprise.

1.2.2 Existing Messaging Systems

Messaging systems are peer-to-peer facilities. In general, each client can send

messages to, and receive messages from any client. Each client connects to a

messaging agent which provides facilities for creating, sending and receiving

messages.

Each system provides a way of addressing messages. Each provides a way to

create a message and fill it with data.

Some systems are capable of broadcasting a message to many destinations.

Others only support sending a message to a single destination.

Some systems provide facilities for asynchronous receipt of messages

(messages are delivered to a client as they arrive). Others support only

synchronous receipt (a client must request each message).

Each messaging system typically provides a range of service that can be

selected on a per message basis. One important attribute is the lengths to

which the system will go to insure delivery. This varies from simple best effort

to guaranteed, only once delivery. Other important attributes are message

time-to-live, priority and whether a response is required.
14 Java Message Service —August 27, 2001

1

1.2.3 JMS Objectives

If JMS provided a union of all the existing features of messaging systems it

would be much too complicated for its intended users. On the other hand, JMS

is more than an intersection of the messaging features common to all products.

It is crucial that JMS include the functionality needed to implement

sophisticated enterprise applications.

JMS defines a common set of enterprise messaging concepts and facilities. It

attempts to minimize the set of concepts a Java language programmer must

learn to use enterprise messaging products. It strives to maximize the

portability of messaging applications.

1.2.3.1 JMS Provider

As noted earlier, a JMS provider is the entity that implements JMS for a

messaging product.

Ideally, JMS providers will be written in 100% Pure Java so they can run in

applets; simplify installation; and, work across architectures and OS’s.

An important goal of JMS is to minimize the work needed to implement a

provider.

1.2.3.2 JMS Messages

JMS defines a set of message interfaces.

Clients use the message implementations supplied by their JMS provider.

A major goal of JMS is that clients have a consistent API for creating and

working with messages that is independent of the JMS provider.

1.2.3.3 JMS Domains

Messaging products can be broadly classified as either point-to-point or publish-
subscribe systems.

Point-to-point (PTP) products are built around the concept of message queues.

Each message is addressed to a specific queue; clients extract messages from

the queue(s) established to hold their messages.
Introduction—August 27, 2001 15

1

Publish and subscribe (Pub/Sub) clients address messages to some node in a

content hierarchy. Publishers and subscribers are generally anonymous and

may dynamically publish or subscribe to the content hierarchy. The system

takes care of distributing the messages arriving from a node’s multiple

publishers to its multiple subscribers.

JMS provides client interfaces tailored for each domain.

1.2.3.4 Portability

The primary portability objective is that new, JMS only, applications are

portable across products within the same messaging domain.

This is in addition to the expected portability of a JMS client across machine

architectures and operating systems (when using the same JMS provider).

Although JMS is designed to allow clients to work with existing message

formats used in a mixed language application, portability of such clients is not

generally achievable (porting a mixed language application from one product

to another is beyond the scope of JMS).

1.2.4 What JMS Does Not Include

JMS does not address the following functionality:

• Load Balancing/Fault Tolerance - Many products provide support for

multiple, cooperating clients implementing a critical service. The JMS API

does not specify how such clients cooperate to appear to be a single, unified

service.

• Error/Advisory Notification - Most messaging products define system

messages that provide asynchronous notification of problems or system

events to clients. JMS does not attempt to standardize these messages. By

following the guidelines defined by JMS, clients can avoid using these

messages and thus prevent the portability problems their use introduces.

• Administration - JMS does not define an API for administering messaging

products.

• Security - JMS does not specify an API for controlling the privacy and

integrity of messages. It also does not specify how digital signatures or keys

are distributed to clients. Security is considered to be a JMS provider-

specific feature that is configured by an administrator rather than controlled

via the JMS API by clients.
16 Java Message Service —August 27, 2001

1

• Wire Protocol - JMS does not define a wire protocol for messaging.

• Message Type Repository - JMS does not define a repository for storing

message type definitions and it does not define a language for creating

message type definitions.

1.3 What Is Required by JMS
The functionality discussed in the specification is required of all JMS providers

unless it is explicitly noted otherwise.

Providers of JMS point-to-point functionality are not required to provide

publish/subscribe functionality and vice versa.

1.4 Relationship to Other JavaSoft Enterprise APIs

1.4.1 Java DataBase Connectivity (JDBCTM)

JMS clients may also use JDBC. They may desire to include the use of both

JDBC and JMS in the same transaction. In most cases, this will be achieved

automatically by implementing these clients as Enterprise JavaBeansTM

components. It will also be possible to do this directly with the Java

Transaction API (JTA).

1.4.2 JavaBeansTM Components

JavaBeans components can use a JMS session to send/receive messages. JMS

itself is an API and the interfaces it defines are not designed to be used directly

as JavaBeans components.

1.4.3 Enterprise JavaBeansTM Components

JMS will be an important resource available to EJBTM component developers. It

can be used in conjunction with other resources like JDBC to implement

enterprise services.

The current EJB specification defines beans that are invoked synchronously via

method calls from EJB clients. A future release of EJB will add a form of

asynchronous bean that is invoked when a JMS client sends it a message.
Introduction—August 27, 2001 17

1

1.4.4 Java Transaction API (JTA)

The javax.transaction package provides a client API for delimiting distributed

transactions and an API for accessing a resource’s ability to participate in a

distributed transaction.

A JMS client may use JTA to delimit distributed transactions; however, this is a

function of the transaction environment the client is running in. It is not a

feature of JMS per se.

A JMS provider can optionally support distributed transactions via JTA.

1.4.5 Java Transaction Service (JTS)

JMS can be used in conjunction with JTS to form distributed transactions that

combine message sends and receives with database updates and other JTS

aware services. Distributed transactions should be handled automatically

when a JMS client is run from within an application server such as an

Enterprise JavaBeans server; however, it is also possible for JMS clients to

program them explicitly.

1.4.6 Java Naming and Directory InterfaceTM (JNDI)

JMS clients look up configured JMS objects using JNDI. JMS administrators use

provider-specific facilities for creating and configuring these objects.

This division of work maximizes the portability of clients by delegating

provider-specific work to the administrator. It also leads to more administrable

applications because clients do not need to embed administrative values in

their code.
18 Java Message Service —August 27, 2001

Architecture 2
2.1 Overview
This chapter describes the environment of message-based applications and the

role JMS plays in this environment.

2.2 What is a JMS Application?
A JMS application is composed of the following parts:

• JMS Clients - These are the Java language programs that send and receive

messages.

• Non-JMS Clients - These are clients that use a message system’s native client

API instead of JMS. If the application predated the availability of JMS it is

likely that it will include both JMS and non-JMS clients.

• Messages - Each application defines a set of messages that are used to

communicate information between its clients.

• JMS Provider - This is a messaging system that implements JMS in addition

to the other administrative and control functionality required of a full-

featured messaging product.

• Administered Objects - Administered objects are preconfigured JMS objects

created by an administrator for the use of clients.
19

2

2.3 Administration
It is expected that JMS providers will differ significantly in their underlying

messaging technology. It is also expected there will be major differences in how

a provider’s system is installed and administered.

If JMS clients are to be portable, they must be isolated from these proprietary

aspects of a provider. This is done by defining JMS administered objects that

are created and customized by a provider’s administrator and later used by

clients. The client uses them through JMS interfaces that are portable. The

administrator creates them using provider-specific facilities.

There are two types of JMS administered objects:

• ConnectionFactory - This is the object a client uses to create a connection

with a provider.

• Destination - This is the object a client uses to specify the destination of

messages it is sending and the source of messages it receives.

Administered objects are placed in a JNDI namespace by an administrator. A

JMS client typically notes in its documentation the JMS administered objects it

requires and how the JNDI names of these objects should be provided to it.

2.4 Two Messaging Styles
A JMS application uses either the point-to-point (PTP) or the publish-and-

subscribe (Pub/Sub) style of messaging. Nothing prevents these styles from

being combined in a single application; however, JMS focuses on applications

that use one or the other.

JMS defines these two styles because they represent the two dominant

approaches to messaging currently in use. Since many messaging systems only

support one of these styles, JMS provides a separate domain for each and

defines compliance for each domain.
20 Java Message Service —August 27, 2001

2

2.5 JMS Interfaces
JMS is based on a set of common messaging concepts. Each JMS messaging

domain - PTP and Pub/Sub - defines a customized set of interfaces for these

concepts.

The following provides a brief definition of these JMS concepts. See the PTP

and Pub/Sub chapters for more information.

• ConnectionFactory - an administered object used by a client to create a

Connection

• Connection - an active connection to a JMS provider

• Destination - an administered object that encapsulates the identity of a

message destination

• Session - a single-threaded context for sending and receiving messages

• MessageProducer - an object created by a Session that is used for sending

messages to a destination

• MessageConsumer - an object created by a Session that is used for receiving

messages sent to a destination

The term consume is used in this document to mean the receipt of a message by

a JMS client; that is, a JMS provider has received a message and has given it to

its client. Since JMS supports both synchronous and asynchronous receipt of

messages, the term consume is used when there is no need to make a distinction

between them.

The term produce is used as the most general term for sending a message. It

means giving a message to a JMS provider for delivery to a destination.

Table 2-1 Relationship of PTP and Pub/Sub interfaces

JMS Parent PTP Domain Pub/Sub Domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber
Architecture—August 27, 2001 21

2

2.6 Developing a JMS Application
Broadly speaking, a JMS application is one or more JMS clients that exchange

messages. The application may also involve non-JMS clients; however, these

clients use the JMS provider’s native API in place of JMS.

A JMS application can be architected and deployed as a unit. In many cases,

JMS clients are added incrementally to an existing application.

The message definitions used by an application may originate with JMS, or

they may have been defined by the non-JMS part of the application.

2.6.1 Developing a JMS Client

A typical JMS client executes the following JMS setup procedure:

• Use JNDI to find a ConnectionFactory object

• Use JNDI to find one or more Destination objects

• Use the ConnectionFactory to create a JMS Connection with message

delivery inhibited

• Use the Connection to create one or more JMS Sessions

• Use a Session and the Destinations to create the MessageProducers and

MessageConsumers needed

• Tell the Connection to start delivery of messages

At this point a client has the basic JMS setup needed to produce and consume

messages.

2.7 Security
JMS does not provide features for controlling or configuring message integrity

or message privacy.

It is expected that many JMS providers will provide such features. It is also

expected that configuration of these services will be handled by provider-

specific administration tools. Clients will get the proper security configuration

as part of the administered objects they use.
22 Java Message Service —August 27, 2001

2

2.8 Multithreading
JMS could have required that all its objects support concurrent use. Since

support for concurrent access typically adds some overhead and complexity,

the JMS design restricts its requirement for concurrent access to those objects

that would naturally be shared by a multithreaded client. The remainder are

designed to be accessed by one logical thread of control at a time.

JMS defines some specific rules that restrict the concurrent use of Sessions.

Since they require more knowledge of JMS specifics than we have presented at

this point, they will be described later. Here we will describe the rationale for

imposing them.

There are two reasons for restricting concurrent access to Sessions. First,

Sessions are the JMS entity that supports transactions. It is very difficult to

implement transactions that are multithreaded. Second, Sessions support

asynchronous message consumption. It is important that JMS not require that

client code used for asynchronous message consumption be capable of

handling multiple, concurrent messages. In addition, if a Session has been set

up with multiple, asynchronous consumers, it is important that the client is not

forced to handle the case where these separate consumers are concurrently

executing. These restrictions make JMS easier to use for typical clients. More

sophisticated clients can get the concurrency they desire by using multiple

sessions.

2.9 Triggering Clients
Some clients are designed to periodically wake up and process messages

waiting for them. A message-based application triggering mechanism is often

Table 2-2 JMS objects that support concurrent use

JMS Object Supports Concurrent Use

Destination YES

ConnectionFactory YES

Connection YES

Session NO

MessageProducer NO

MessageConsumer NO
Architecture—August 27, 2001 23

2

used with this style of client. The trigger is typically a threshold of waiting

messages, etc.

JMS does not provide a mechanism for triggering the execution of a client.

Some providers may supply such a triggering mechanism via their

administrative facilities.

2.10 Request/Reply
JMS provides the JMSReplyTo message header field for specifying the

Destination where a reply to a message should be sent. The JMSCorrelationID
header field of the reply can be used to reference the original request. See

Section 3.4, “Message Header Fields,” for more information.

In addition, JMS provides a facility for creating temporary queues and topics

that can be used as a unique destination for replies.

Enterprise messaging products support many styles of request/reply, from the

simple “one message request yields a one message reply” to “one message

request yields streams of messages from multiple respondents.” Rather than

architect a specific JMS request/reply abstraction, JMS provides the basic

facilities on which many can be built.

For convenience, JMS defines request/reply helper classes (classes written

using JMS) for both the PTP and Pub/Sub domains that implement a basic

form of request/reply. JMS providers and clients may provide more specialized

implementations.
24 Java Message Service —August 27, 2001

JMSMessageModel 3
3.1 Background
Enterprise messaging products treat messages as lightweight entities that

consist of a header and a body. The header contains fields used for message

routing and identification; the body contains the application data being sent.

Within this general form, the definition of a message varies significantly across

products. There are major differences in the content and semantics of headers.

Some products use a self-describing, canonical encoding of message data;

others treat data as completely opaque. Some products provide a repository for

storing message descriptions that can be used to identify and interpret

message content; others don’t.

It would be quite difficult for JMS to capture the breadth of this sometimes

conflicting union of message models.

3.2 Goals
The JMS message model has the following goals:

• Provide a single, unified message API

• Provide an API suitable for creating messages that match the format used by

existing, non-JMS applications

• Support the development of heterogeneous applications that span operating

systems, machine architectures, and computer languages

• Support messages containing Java objects
25

3

• Support messages containing Extensible Markup Language pages (see

http://www.w3.org/XML).

3.3 JMS Messages
JMS messages are composed of the following parts:

• Header - All messages support the same set of header fields. Header fields

contain values used by both clients and providers to identify and route

messages.

• Properties - In addition to the standard header fields, messages provide a

built-in facility for adding optional header fields to a message.

– Application-specific properties - This provides a mechanism for adding

application-specific header fields to a message.

– Standard properties - JMS defines some standard properties that are, in

effect, optional header fields.

– Provider-specific properties - Integrating a JMS client with a JMS

provider native client may require the use of provider-specific properties.

JMS defines a naming convention for these.

• Body - JMS defines several types of message body which cover the majority

of messaging styles currently in use.

3.4 Message Header Fields
The following subsections describe each JMS message header field. A

message’s complete header is transmitted to all JMS clients that receive the

message. JMS does not define the header fields transmitted to non-JMS clients.

3.4.1 JMSDestination

The JMSDestination header field contains the destination to which the message

is being sent.

When a message is sent, this field is ignored. After completion of the send, it

holds the destination object specified by the sending method.

When a message is received, its destination value must be equivalent to the

value assigned when it was sent.
26 Java Message Service —August 27, 2001

3

3.4.2 JMSDeliveryMode

The JMSDeliveryMode header field contains the delivery mode specified when

the message was sent.

When a message is sent, this field is ignored. After completion of the send, it

holds the delivery mode specified by the sending method.

See Section 4.7, “Message Delivery Mode,” for more information.

3.4.3 JMSMessageID

The JMSMessageID header field contains a value that uniquely identifies each

message sent by a provider.

When a message is sent, JMSMessageID is ignored. When the send method

returns, the field contains a provider-assigned value.

A JMSMessageID is a String value which should function as a unique key for

identifying messages in a historical repository. The exact scope of uniqueness is

provider defined. It should at least cover all messages for a specific installation

of a provider where an installation is some connected set of message routers.

All JMSMessageID values must start with the prefix ‘ID:’. Uniqueness of

message ID values across different providers is not required.

Since message IDs take some effort to create and increase a message’s size,

some JMS providers may be able to optimize message overhead if they are

given a hint that message ID is not used by an application. JMS

MessageProducer provides a hint to disable message ID. When a client sets a

producer to disable message ID, it is saying that it does not depend on the

value of message ID for the messages it produces. If the JMS provider accepts

this hint, these messages must have the message ID set to null; if the provider

ignores the hint, the message ID must be set to its normal unique value.

3.4.4 JMSTimestamp

The JMSTimestamp header field contains the time a message was handed off to

a provider to be sent. It is not the time the message was actually transmitted

because the actual send may occur later due to transactions or other client side

queueing of messages.
JMS Message Model—August 27, 2001 27

3

When a message is sent, JMSTimestamp is ignored. When the send method

returns, the field contains a a time value somewhere in the interval between

the call and the return. It is in the format of a normal Java millis time value.

Since timestamps take some effort to create and increase a message’s size, some

JMS providers may be able to optimize message overhead if they are given a

hint that timestamp is not used by an application. JMS MessageProducer
provides a hint to disable timestamps. When a client sets a producer to disable

timestamps it is saying that it does not depend on the value of timestamp for

the messages it produces. If the JMS provider accepts this hint, these messages

must have the timestamp set to zero; if the provider ignores the hint, the

timestamp must be set to its normal value.

3.4.5 JMSCorrelationID

A client can use the JMSCorrelationID header field to link one message with

another. A typical use is to link a response message with its request message.

JMSCorrelationID can hold one of the following:

• A provider-specific message ID

• An application-specific String

• A provider-native byte[] value

Since each message sent by a JMS provider is assigned a message ID value, it is

convenient to link messages via message ID. All message ID values must start

with the ‘ID:’ prefix.

In some cases, an application (made up of several clients) needs to use an

application-specific value for linking messages. For instance, an application

may use JMSCorrelationID to hold a value referencing some external

information. Application-specified values must not start with the ‘ID:’ prefix;

this is reserved for provider-generated message ID values.

If a provider supports the native concept of correlation ID, a JMS client may

need to assign specific JMSCorrelationID values to match those expected by

non-JMS clients. A byte[] value is used for this purpose. JMS providers without

native correlation ID values are not required to support byte[] values*. The use

of a byte[] value for JMSCorrelationID is non-portable.

* Their implementation of setJMSCorrelationIDAsBytes() and getJMSCorrelationIDAsBytes() may throw ja-
va.lang.UnsupportedOperationException.
28 Java Message Service —August 27, 2001

3

3.4.6 JMSReplyTo

The JMSReplyTo header field contains a Destination supplied by a client when

a message is sent. It is the destination where a reply to the message should be

sent.

Messages sent with a null JMSReplyTo value may be a notification of some

event or they may just be some data the sender thinks is of interest.

Messages sent with a JMSReplyTo value are typically expecting a response. A

response may be optional; it is up to the client to decide.

3.4.7 JMSRedelivered

If a client receives a message with the JMSRedelivered indicator set, it is likely,

but not guaranteed, that this message was delivered but not acknowledged in

the past. In general, a provider must set the JMSRedelivered message header

field of a message whenever it is redelivering a message. If the field is set to

true, it is an indication to the consuming application that the message may

have been delivered in the past and that the application should take extra

precautions to prevent duplicate processing. See Section 4.4.11, “Message

Acknowledgment,” for more information.

This header field has no meaning on send and is left unassigned by the

sending method.

3.4.8 JMSType

The JMSType header field contains a message type identifier supplied by a

client when a message is sent.

Some JMS providers use a message repository that contains the definitions of

messages sent by applications. The type header field may reference a message’s

definition in the provider’s repository.

JMS does not define a standard message definition repository, nor does it

define a naming policy for the definitions it contains.

Some messaging systems require that a message type definition for each

application message be created and that each message specify its type. In order

to work with such JMS providers, JMS clients should assign a value to JMSType
whether the application makes use of it or not. This insures that the field is

properly set for those providers that require it.
JMS Message Model—August 27, 2001 29

3

To insure portability, JMS clients should use symbolic values for JMSType that

can be configured at installation time to the values defined in the current

provider’s message repository. If string literals are used, they may not be valid

type names for some JMS providers.

3.4.9 JMSExpiration

When a message is sent, its expiration time is calculated as the sum of the time-

to-live value specified on the send method and the current GMT value. On

return from the send method, the message’s JMSExpiration header field

contains this value. When a message is received its JMSExpiration header field

contains this same value.

If the time-to-live is specified as zero, expiration is set to zero to indicate that

the message does not expire.

When GMT is later than an undelivered message’s expiration time, the

message should be destroyed. JMS does not define a notification of message

expiration.

Clients should not receive messages that have expired; however, JMS does not

guarantee that this will not happen.

3.4.10 JMSPriority

The JMSPriority header field contains the message’s priority.

When a message is sent, this field is ignored. After completion of the send, it

holds the value specified by the method sending the message.

JMS defines a ten-level priority value, with 0 as the lowest priority and 9 as the

highest. In addition, clients should consider priorities 0-4 as gradations of

normal priority and priorities 5-9 as gradations of expedited priority.

JMS does not require that a provider strictly implement priority ordering of

messages; however, it should do its best to deliver expedited messages ahead

of normal messages.
30 Java Message Service —August 27, 2001

3

3.4.11 How Message Header Values Are Set

3.4.12 Overriding Message Header Fields

JMS permits an administrator to configure JMS to override the client-specified

values for JMSDeliveryMode, JMSExpiration and JMSPriority. If this is done, the

header field value must reflect the administratively specified value.

JMS does not define specifically how an administrator overrides these header

field values. A JMS provider is not required to support this administrative

option.

3.5 Message Properties
In addition to the header fields defined here, the Message interface contains a

built-in facility for supporting property values. In effect, this provides a

mechanism for adding optional header fields to a message.

Properties allow a client, via message selectors (see Section 3.8, “Message

Selection”), to have a JMS provider select messages on its behalf using

application-specific criteria.

Table 3-1 Message Header Field Value Sent

Header Fields Set By

JMSDestination Send Method

JMSDeliveryMode Send Method

JMSExpiration Send Method

JMSPriority Send Method

JMSMessageID Send Method

JMSTimestamp Send Method

JMSCorrelationID Client

JMSReplyTo Client

JMSType Client

JMSRedelivered Provider
JMS Message Model—August 27, 2001 31

3

3.5.1 Property Names

Property names must obey the rules for a message selector identifier. See

Section 3.8.1.1, “Message Selector Syntax,” for more information.

3.5.2 Property Values

Property values can be boolean, byte, short, int, long, float, double, and String.

3.5.3 Using Properties

Property values are set prior to sending a message. When a client receives a

message, its properties are in read-only mode. If a client attempts to set

properties at this point, a MessageNotWriteableException is thrown.

A property value may duplicate a value in a message’s body or it may not.

Although JMS does not define a policy for what should or should not be made

a property, application developers should note that JMS providers will likely

handle data in a message’s body more efficiently than data in a message’s

properties. For best performance, applications should use message properties

only when they need to customize a message’s header. The primary reason for

doing this is to support customized message selection.

See Section 3.8, “Message Selection,” for more information about JMS message

properties.

3.5.4 Property Value Conversion

Properties support the following conversion table. The marked cases must be

supported. The unmarked cases must throw the JMS MessageFormatException.

The String to numeric conversions must throw the

java.lang.NumberFormatException if the numeric’s valueOf() method does not

accept the String value as a valid representation. Attempting to read a null

value as a Java primitive type must be treated as calling the primitive’s

corresponding valueOf(String) conversion method with a null value.
32 Java Message Service —August 27, 2001

3

A value set as the row type can be read as the column type.

3.5.5 Property Values as Objects

In addition to the type-specific set/get methods for properties, JMS provides

the setObjectProperty/getObjectProperty methods. These support the same set of

property types using the objectified primitive values. Their purpose is to allow

the decision of property type to made at execution time rather than at compile

time. They support the same property value conversions.

The setObjectProperty method accepts values of Boolean, Byte, Short, Integer,
Long, Float, Double and String. An attempt to use any other class must throw a

JMS MessageFormatException.

The getObjectProperty method only returns values of null, Boolean, Byte, Short,
Integer, Long, Float, Double and String. A null value is returned if a property by

the specified name does not exist.

3.5.6 Property Iteration

The order of property values is not defined. To iterate through a message’s

property values, use getPropertyNames to retrieve a property name enumeration

and then use the various property get methods to retrieve their values.

The getPropertyNames method does not return the names of the JMS standard

header fields.

Table 3-2 Property Value Conversion

boolean byte short int long float double String

boolean X X

byte X X X X X

short X X X X

int X X X

long X X

float X X X

double X X

String X X X X X X X X
JMS Message Model—August 27, 2001 33

3

3.5.7 Clearing a Message’s Property Values

A message’s properties are deleted by the clearProperties method. This leaves

the message with an empty set of properties. New property entries can then be

both created and read.

Clearing a message’s property entries does not clear the value of its body.

JMS does not provide a way to remove an individual property entry once it has

been added to a message.

3.5.8 Nonexistent Properties

Getting a property value for a name that has not been set is handled as if the

the property exists with a null value.

3.5.9 JMS Defined Properties

JMS reserves the ‘JMSX’ property name prefix for JMS defined properties. The

full set of these properties is provided in Table 3-3. New JMS defined

properties may be added in later versions of JMS.

Unless noted otherwise, support for these properties is optional. The

Enumeration ConnectionMetaData.getJMSXPropertyNames() method returns the

names of the JMSX properties supported by a connection.

JMSX properties may be referenced in message selectors whether or not they

are supported by a connection. If they are not present in a message, they are

treated like any other absent property.

The existence, in a particular message, of JMS defined properties that are set by

a JMS provider depends on how a particular provider controls use of the
34 Java Message Service —August 27, 2001

3

property. It may choose to include them in some messages and omit them in

others depending on administrative or other criteria.

Table 3-3 JMS Defined Properties

Name Type Set By Use

JMSXUserID String Provider on

Send

The identity of the user sending the

message

JMSXAppID String Provider on

Send

The identity of the application

sending the message

JMSXDeliveryCount int Provider on

Receive

The number of message delivery

attempts; the first is 1, the second 2,...

JMSXGroupID String Client The identity of the message group

this message is part of

JMSXGroupSeq int Client The sequence number of this

message within the group; the first

message is 1, the second 2,...

JMSXProducerTXID String Provider on

Send

The transaction identifier of the

transaction within which this

message was produced

JMSXConsumerTXID String Provider on

Receive

The transaction identifier of the

transaction within which this

message was consumed

JMSXRcvTimestamp long Provider on

Receive

The time JMS delivered the message

to the consumer

JMSXState int Provider Assume there exists a message

warehouse that contains a separate

copy of each message sent to each

consumer and that these copies exist

from the time the original message

was sent.

Each copy’s state is one of:

1(waiting), 2(ready), 3(expired) or

4(retained).

Since state is of no interest to

producers and consumers, it is not

provided to either. It is only relevant

to messages looked up in a

warehouse, and JMS provides no API

for this.
JMS Message Model—August 27, 2001 35

3

JMSX properties set by the provider on send are available to both the producer

and the consumers of the message. JSMX properties set by the provider on

receive are available only to the consumers.

JMSXGroupID and JMSXGroupSeq are standard properties clients should use if

they want to group messages. All providers must support them.

The case of these JMSX property names must be as defined in the table above.

Unless specifically noted, the values and semantics of the JMSX properties are

undefined.

3.5.10 Provider-Specific Properties

JMS reserves the ‘JMS_<vendor_name>’ property name prefix for provider-

specific properties. Each provider defines their own value of <vendor_name>.

This is the mechanism a JMS provider uses to make its special per message

services available to a JMS client.

The purpose of provider-specific properties is to provide special features needed to
support JMS use with provider-native clients. They should not be used for JMS to JMS
messaging.

3.6 Message Acknowledgment
All JMS messages support the acknowledge method for use when a client has

specified that a JMS consumer’s messages are to be explicitly acknowledged.

If a client uses automatic acknowledgment, calls to acknowledge are ignored.

See Section 4.4.11, “Message Acknowledgment,” for more information.

3.7 The Message Interface
The Message interface is the root interface for all JMS messages. It defines the

JMS message header fields, property facility and the acknowledge method used

for all messages.
36 Java Message Service —August 27, 2001

3

3.8 Message Selection
Many messaging applications need to filter and categorize the messages they

produce.

In the case where a message is sent to a single receiver, this can be done with

reasonable efficiency by putting the criteria in the message and having the

receiving client discard the ones it’s not interested in.

When a message is broadcast to many clients, it becomes useful to place the

criteria into the message header so that it is visible to the JMS provider. This

allows the provider to handle much of the filtering and routing work that

would otherwise need to be done by the application.

JMS provides a facility that allows clients to delegate message selection to their

JMS provider. This simplifies the work of the client and allows JMS providers

to eliminate the time and bandwidth they would otherwise waste sending

messages to clients that don’t need them.

Clients attach application-specific selection criteria to messages using message

properties. Clients specify message selection criteria using JMS message selector
expressions.

3.8.1 Message Selector

A JMS message selector allows a client to specify, by message header, the

messages it’s interested in. Only messages whose headers and properties

match the selector are delivered. The semantics of not delivered differ a bit

depending on the MessageConsumer being used. See Section 5.8,

“QueueReceiver,” and Section 6.11, “TopicSubscriber,” for more details.

Message selectors cannot reference message body values.

A message selector matches a message if the selector evaluates to true when

the message’s header field and property values are substituted for their

corresponding identifiers in the selector.
JMS Message Model—August 27, 2001 37

3

3.8.1.1 Message Selector Syntax

A message selector is a String whose syntax is based on a subset of the SQL92*

conditional expression syntax.

If the value of a message selector is an empty string, the value is treated as a

null and indicates that there is no message selector for the message consumer.

The order of evaluation of a message selector is from left to right within

precedence level. Parentheses can be used to change this order.

Predefined selector literals and operator names are written here in upper case;

however, they are case insensitive.

A selector can contain:

• Literals:

– A string literal is enclosed in single quotes, with an included single quote

represented by doubled single quote; for example, ‘literal’ and ‘literal’’s’.

Like Java String literals, these use the Unicode character encoding.

– An exact numeric literal is a numeric value without a decimal point, such

as 57, -957, +62; numbers in the range of Java long are supported. Exact

numeric literals use the Java integer literal syntax.

– An approximate numeric literal is a numeric value in scientific notation,

such as 7E3 and -57.9E2, or a numeric value with a decimal, such as 7., -

95.7, and +6.2; numbers in the range of Java double are supported.

Approximate literals use the Java floating-point literal syntax.

– The boolean literals TRUE and FALSE.

• Identifiers:

– An identifier is an unlimited-length character sequence that must begin

with a Java identifier start character; all following characters must be Java

identifier part characters. An identifier start character is any character for

which the method Character.isJavaIdentifierStart returns true. This includes

‘_’ and ‘$’. An identifier part character is any character for which the

method Character.isJavaIdentifierPart returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.

* See X/Open CAE Specification Data Management: Structured Query Language (SQL), Version 2, ISBN: 1-
85912-151-9 March 1996.
38 Java Message Service —August 27, 2001

3

– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, IS, or

ESCAPE.

– Identifiers are either header field references or property references. The

type of a property value in a message selector corresponds to the type

used to set the property. If a property that does not exist in a message is

referenced, its value is NULL. The semantics of evaluating NULL values

in a selector are described in Section 3.8.1.2, “Null Values.”

– The conversions that apply to the get methods for properties do not

apply when a property is used in a message selector expression. For

example, suppose you set a property as a string value, as in the

following:

 myMessage.setStringProperty("NumberOfOrders", "2");

The following expression in a message selector would evaluate to false,

because a string cannot be used in an arithmetic expression:

 "NumberOfOrders > 1"

– Identifiers are case sensitive.

– Message header field references are restricted to JMSDeliveryMode,

JMSPriority, JMSMessageID, JMSTimestamp, JMSCorrelationID, and

JMSType. JMSMessageID, JMSCorrelationID, and JMSType values may be

null and if so are treated as a NULL value.

– Any name beginning with ‘JMSX’ is a JMS defined property name.

– Any name beginning with ‘JMS_’ is a provider-specific property name.

– Any name that does not begin with ‘JMS’ is an application-specific

property name.

• Whitespace is the same as that defined for Java: space, horizontal tab, form

feed and line terminator.

• Expressions:

– A selector is a conditional expression; a selector that evaluates to true

matches; a selector that evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic

operations, identifiers with numeric values, and numeric literals.

– Conditional expressions are composed of themselves, comparison

operations, logical operations, identifiers with boolean values, and

boolean literals.
JMS Message Model—August 27, 2001 39

3

• Standard bracketing () for ordering expression evaluation is supported.

• Logical operators in precedence order: NOT, AND, OR

• Comparison operators: =, >, >=, <, <=, <> (not equal)

– Only like type values can be compared. One exception is that it is valid to

compare exact numeric values and approximate numeric values (the type

conversion required is defined by the rules of Java numeric promotion). If

the comparison of non-like type values is attempted, the value of the

operation is false. If either of the type values evaluates to NULL, the

value of the expression is unknown.

– String and Boolean comparison is restricted to = and <>. Two strings are

equal if and only if they contain the same sequence of characters.

• Arithmetic operators in precedence order:

– +, - (unary)

– *, / (multiplication and division)

– +, - (addition and subtraction)

– Arithmetic operations must use Java numeric promotion.

• arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3
(comparison operator)

– “age BETWEEN 15 AND 19” is equivalent to “age >= 15 AND age <= 19”

– “age NOT BETWEEN 15 AND 19” is equivalent to “age < 15 OR age >

19”

• identifier [NOT] IN (string-literal1, string-literal2,...) (comparison operator

where identifier has a String or NULL value)

– “Country IN (’ UK’, ’US’, ’France’)” is true for ‘UK’ and false for ‘Peru’; it

is equivalent to the expression ”(Country = ’ UK’) OR (Country = ’ US’)

OR (Country = ’ France’)”

– “Country NOT IN (’ UK’, ’US’, ’France’)” is false for ‘UK’ and true for

‘Peru’; it is equivalent to the expression “NOT ((Country = ’ UK’) OR

(Country = ’ US’) OR (Country = ’ France’))”

– If identifier of an IN or NOT IN operation is NULL, the value of the

operation is unknown.

• identifier [NOT] LIKE pattern-value [ESCAPE escape-character] (comparison

operator, where identifier has a String value; pattern-value is a string literal
40 Java Message Service —August 27, 2001

3

where ‘_’ stands for any single character; ‘%’ stands for any sequence of

characters, including the empty sequence, and all other characters stand for

themselves. The optional escape-character is a single-character string literal

whose character is used to escape the special meaning of the ‘_’ and ‘%’ in

pattern-value.)

– “phone LIKE ‘12%3’” is true for ‘123’ or ‘12993’ and false for ‘1234’

– “word LIKE ‘l_se’” is true for ‘lose’ and false for ‘loose’

– “underscored LIKE ‘_%’ ESCAPE ‘\’” is true for ‘_foo’ and false for

‘bar’

– “phone NOT LIKE ‘12%3’” is false for ‘123’ and ‘12993’ and true for

‘1234’

– If identifier of a LIKE or NOT LIKE operation is NULL, the value of the

operation is unknown.

• identifier IS NULL (comparison operator that tests for a null header field

value or a missing property value)

– “prop_name IS NULL”

• identifier IS NOT NULL (comparison operator that tests for the existence of a

non-null header field value or property value)

– “prop_name IS NOT NULL”

JMS providers are required to verify the syntactic correctness of a message

selector at the time it is presented. A method providing a syntactically

incorrect selector must result in a JMS InvalidSelectorException.

The following message selector selects messages with a message type of car
and color of blue and weight greater than 2500 lbs:

"JMSType = ’car’ AND color = ’blue’ AND weight > 2500"

3.8.1.2 Null Values

As noted above, header fields and property values may be NULL. The

evaluation of selector expressions containing NULL values is defined by SQL

92 NULL semantics. A brief description of these semantics is provided here.

SQL treats a NULL value as unknown. Comparison or arithmetic with an

unknown value always yields an unknown value.
JMS Message Model—August 27, 2001 41

3

The IS NULL and IS NOT NULL operators convert an unknown header or

property value into the respective TRUE and FALSE values.

The boolean operators use three-valued logic as defined by the following

tables:

3.8.1.3 Special Notes

When used in a message selector JMSDeliveryMode is treated as having the

values ‘PERSISTENT’ and ‘NON_PERSISTENT’.

Date and time values should use the standard Java long millis value. When a

date or time literal is included in a message selector, it should be an integer

Table 3-4 The Definition of the AND Operator

AND T F U

T T F U

F F F F

U U F U

Table 3-5 The Definition of the OR Operator

OR T F U

T T T T

F T F U

U T U U

Table 3-6 The Definition of the NOT Operator

NOT

T F

F T

U U
42 Java Message Service —August 27, 2001

3

literal for a millis value. The standard way to produce millis values is to use

java.util.Calendar.

Although SQL supports fixed decimal comparison and arithmetic, JMS

message selectors do not. This is the reason for restricting exact numeric

literals to those without a decimal (and the addition of numerics with a

decimal as an alternate representation for an approximate numeric values).

SQL comments are not supported.

3.9 Access to Sent Messages
After sending a message, a client may retain and modify it without affecting

the message that has been sent. The same message object may be sent multiple

times.

During the execution of its sending method, the message must not be changed

by the client. If it is modified, the result of the send is undefined.

3.10 Changing the Value of a Received Message
When a message is received, its header field values can be changed; however,

its property entries and its body are read-only, as specified in this chapter.

The rationale for the read-only restriction is that it gives JMS providers more

freedom in how they implement the management of received messages. For

instance, they may return a message object that references property entries and

body values that reside in an internal message buffer rather than being forced

to make a copy.

A consumer can modify a received message after calling either the clearBody or

clearProperties method to make the body or properties writable. If the consumer

modifies a received message, and the message is subsequently redelivered, the

redelivered message must be the original, unmodified message (except for

headers and properties modified by the JMS provider as a result of the

redelivery, such as the JMSRedelivered header and the JMSXDeliveryCount
property).
JMS Message Model—August 27, 2001 43

3

3.11 JMS Message Body
JMS provides five forms of message body. Each form is defined by a message

interface:

• StreamMessage - a message whose body contains a stream of Java primitive

values. It is filled and read sequentially.

• MapMessage - a message whose body contains a set of name-value pairs

where names are Strings and values are Java primitive types. The entries can

be accessed sequentially by enumerator or randomly by name. The order of

the entries is undefined.

• TextMessage - a message whose body contains a java.lang.String. The

inclusion of this message type is based on our presumption that String
messages will be used extensively. One reason for this is that XML will

likely become a popular mechanism for representing the content of JMS

messages.

• ObjectMessage - a message that contains a Serializable Java object. If a

collection of Java objects is needed, one of the collection classes provided in

JDK 1.2 can be used.

• BytesMessage - a message that contains a stream of uninterpreted bytes.

This message type is for literally encoding a body to match an existing

message format. In many cases, it will be possible to use one of the other,

self-defining, message types instead. Although JMS allows the use of message
properties with byte messages, they are typically not used, since the inclusion of
properties may affect the format.

3.11.1 Clearing a Message Body

The clearBody method of Message resets the value of the message body to the

‘empty’ initial message value as set by the message type’s create method

provided by Session. Clearing a message’s body does not clear its property

entries.

3.11.2 Read-Only Message Body

When a message is received, its body is read only. If an attempt is made to

change the body, a MessageNotWriteableException must be thrown. If its body is

subsequently cleared, the body is in the same state as an empty body in a

newly created message.
44 Java Message Service —August 27, 2001

3

3.11.3 Conversions Provided by StreamMessage and MapMessage

Both StreamMessage and MapMessage support the same set of primitive data

types.

The types can be read or written explicitly using methods for each type. They

may also be read or written generically as objects. For instance, a call to

MapMessage.setInt(“foo”, 6) is equivalent to MapMessage.setObject(“foo”, new
Integer(6)). Both forms are provided because the explicit form is convenient for

static programming and the object form is needed when types are not known

at compile time.

Both StreamMessage and MapMessage support the following conversion table.

The marked cases must be supported. The unmarked cases must throw a JMS

MessageFormatException. The String to numeric conversions must throw a

java.lang.NumberFormatException if the numeric’s valueOf() method does not

accept the String value as a valid representation.

StreamMessage and MapMessage must implement the String to boolean

conversion as specified by the valueOf(String) method of Boolean as defined by

the Java language.

Attempting to read a null value as a Java primitive type must be treated as

calling the primitive’s corresponding valueOf(String) conversion method with a

null value. Since char does not support a String conversion, attempting to read

a null value as a char must throw NullPointerException.

Getting a MapMessage field for a field name that has not been set is handled as

if the field exists with a null value.

If a read method of StreamMessage or BytesMessage throws a

MessageFormatException or NumberFormatException, the current position of the

read pointer must not be incremented. A subsequent read must be capable of

recovering from the exception by rereading the data as a different type.
JMS Message Model—August 27, 2001 45

3

A value written as the row type can be read as the column type.

3.11.4 Messages for Non-JMS Clients

A number of enterprise messaging systems support some form of self-defining

stream and/or map native message type. Although clients could use

BytesMessages to construct native messages of this form, JMS provides the

StreamMessage and MapMessage types as a more convenient API.

For instance, when a client is using a JMS provider that supports a native map

message, and it wishes to send a map message that can be read by both JMS

and native clients, it uses a MapMessage. When the message is sent, the

provider translates it into its native form. Native clients can then receive it. If a

JMS provider receives it, the provider translates it back into a MapMessage.

Even when a new JMS application with newly defined messages is written, the

application may choose to use StreamMessage and MapMessage to insure that

later, non-JMS clients will be able to read the messages.

If a JMS client sends a StreamMessage or MapMessage, it must be translated by a

receiving JMS provider into an equivalent StreamMessage or MapMessage. When

passed between JMS clients, a message must always retain its full form. For

instance, a message sent as MapMessage must not arrive at a JMS client as a

BytesMessage.

Table 3-7 Conversions for StreamMessage and MapMessage

boolean byte short char int long float double String byte[]

boolean X X

byte X X X X X

short X X X X

char X X

int X X X

long X X

float X X X

double X X

String X X X X X X X X

byte[] X
46 Java Message Service —August 27, 2001

3

If a JMS provider receives a message created by a native client, the provider

should do its best to transform it into the ‘best’ JMS message type. For

instance, if it is a native stream message it should be transformed into a

StreamMessage. If this is not possible, the provider is always able to transform it

into a BytesMessage.

3.12 Provider Implementations of JMS Message Interfaces
JMS provides a set of message interfaces that define the JMS message model. It

does not provide implementations of these interfaces.

Each JMS provider provides its own implementation of its Session’s message

creation methods. This allows a provider to use message implementations that

are tailored to its needs.

A provider must be prepared to accept, from a client, a message whose

implementation is not one of its own. A message with a ‘foreign’

implementation may not be handled as efficiently as a provider’s own

implementation; however, it must be handled.

Note the following exception case when a provider is handling a foreign

message implementation. If the foreign message implementation contains a

JMSReplyTo header field that is set to a foreign destination implementation, the

provider is not required to handle or preserve the value of this header field.

The JMS message interfaces provide write/set methods for setting object

values in a message body and message properties. All of these methods must

be implemented to copy their input objects into the message. The value of an

input object is allowed to be null and will return null when accessed. One

exception to this is that BytesMessage does not support the concept of a null

stream, and attempting to write a null into it must throw

java.lang.NullPointerException.

The JMS message interfaces provide read/get methods for accessing objects in

a message body and message properties. All of these methods must be

implemented to return a copy of the accessed message objects.
JMS Message Model—August 27, 2001 47

3

48 Java Message Service —August 27, 2001

JMSCommonFacilities 4
4.1 Overview
This chapter describes the JMS facilities that are shared by both the PTP and

Pub/Sub domains.

4.2 Administered Objects
JMS administered objects are objects containing JMS configuration information

that are created by a JMS administrator and later used by JMS clients. They

make it practical to administer JMS applications in the enterprise.

Although the interfaces for administered objects do not explicitly depend on JNDI,
JMS establishes the convention that JMS clients find them by looking them up in a
namespace using JNDI.

An administrator can place an administered object anywhere in a namespace.

JMS does not define a naming policy.

This strategy of partitioning JMS and administration provides several benefits:

• It hides provider-specific configuration details from JMS clients.

• It abstracts JMS administrative information into Java objects that are easily

organized and administered from a common management console.

• Since there will be JNDI providers for all popular naming services, this

means JMS providers can deliver one implementation of administered

objects that will run everywhere.
49

4

An administered object should not hold on to any remote resources. Its lookup

should not use remote resources other than those used by JNDI itself.

Clients should think of administered objects as local Java objects. Looking

them up should not have any hidden side effects or use surprising amounts of

local resources.

JMS defines two administered objects, Destination and ConnectionFactory.

It is expected that JMS providers will provide the tools an administrator needs

to create and configure administered objects in a JNDI namespace. JMS

provider implementations of administered objects should be both

javax.naming.Referenceable and java.io.Serializable so that they can be stored in all

JNDI naming contexts. In addition, it is recommended that these

implementations follow the JavaBeansTM design patterns.

4.2.1 Destination

JMS does not define a standard address syntax. Although this was considered,

it was decided that the differences in address semantics between existing

enterprise messaging products was too wide to bridge with a single syntax.

Instead, JMS defines the Destination object which encapsulates provider-specific

addresses.

Since Destination is an administered object, it may contain provider-specific

configuration information in addition to its address.

JMS also supports a client’s use of provider-specific address names. See

Section 4.4.4, “Creating Destinations,” for more information.

Destination objects support concurrent use.

4.2.2 ConnectionFactory

A ConnectionFactory encapsulates a set of connection configuration parameters

that has been defined by an administrator. A client uses it to create a

Connection with a JMS provider.

ConnectionFactory objects support concurrent use.
50 Java Message Service —August 27, 2001

4

4.3 Connection
A JMS Connection is a client’s active connection to its JMS provider. It will

typically allocate provider resources outside the Java virtual machine.

Connection objects support concurrent use.

A Connection serves several purposes:

• It encapsulates an open connection with a JMS provider. It typically

represents an open TCP/IP socket between a client and a provider’s service

daemon.

• Its creation is where client authentication takes place.

• It can specify a unique client identifier.

• It creates Session objects.

• It provides ConnectionMetaData.

• It supports an optional ExceptionListener.

Due to the authentication and communication setup done when a Connection is

created, a Connection is a relatively heavyweight JMS object. Most clients will

do all their messaging with a single Connection. Other more advanced

applications may use several Connections. JMS does not architect a reason for

using multiple connections (other than when a client acts as a gateway

between two different providers); however, there may be operational reasons

for doing so.

4.3.1 Authentication

When creating a connection, a client may specify its credentials as

name/password.

If no credentials are specified, the current thread’s credentials are used. At this

point, the JDK does not define the concept of a thread’s default credentials;

however, it is likely this will be defined in the near future. For now, the

identity of the user under which the JMS client is running should be used.

4.3.2 Client Identifier

The preferred way to assign a client’s client identifier is for it to be configured

in a client-specific ConnectionFactory and transparently assigned to the
JMS Common Facilities—August 27, 2001 51

4

connection it creates. Alternatively, a client can set a connection’s client

identifier using a provider-specific value. The facility to explicitly set a

connection’s client identifier is not a mechanism for overriding the identifier

that has been administratively configured. It is provided for the case where no

administratively specified identifier exists. If one does exist, an attempt to

change it by setting it must throw a IllegalStateException.

If a client explicitly does the set it must do this immediately after creating the

connection and before any other action on the connection is taken. After this

point, setting the client identifier is a programming error that should throw an

IllegalStateException.

The purpose of the client identifier is to associate a connection and its objects

with a state maintained on behalf of the client by a provider. By definition, the

client state identified by a client identifier can be ‘in use’ by only one client at

a time. A JMS provider must prevent concurrently executing clients from using

it.

This prevention may take the form of JMSExceptions thrown when such use is

attempted; it may result in the offending client being blocked; or some other

solution. A JMS provider must insure that such attempted ‘sharing’ of an

individual client state does not result in messages being lost or doubly

processed.

The only individual client state identified by JMS is that required to support

durable subscriptions. See Section 6.3, “Durable Subscription,” for more

information.

4.3.3 Connection Setup

A JMS client typically creates a Connection, one or more Sessions, and a number

of MessageProducers and MessageConsumers. When a Connection is created, it is

in stopped mode. That means that no messages are being delivered to it.

It is typical to leave the Connection in stopped mode until setup is complete. At

that point the Connection’s start() method is called and messages begin arriving

at the Connection’s consumers. This setup convention minimizes any client

confusion that may result from asynchronous message delivery while the client

is still in the process of setting itself up.

A Connection can be started immediately and the setup can be done afterwards.

Clients that do this must be prepared to handle asynchronous message

delivery while they are still in the process of setting up.
52 Java Message Service —August 27, 2001

4

A MessageProducer can send messages while a Connection is stopped.

It is important to note that clients rely on the fact that no messages are

delivered by a connection until it has been started. JMS providers must insure

that this is the case.

4.3.4 Pausing Delivery of Incoming Messages

A connection’s delivery of incoming messages can be temporarily stopped

using its stop() method. It can be restarted using its start() method. When the

connection is stopped, delivery to all the connection’s MessageConsumers is

inhibited: synchronous receives block, and messages are not delivered to

MessageListeners.

Stopping a connection has no effect on its ability to send messages. Stopping a

stopped connection and starting a started connection are ignored.

A stop method call must not return until delivery of messages has paused. This

means a client can rely on the fact that none of its message listeners will be

called and all threads of control waiting for receive to return will not return

with a message until the connection is restarted. The receive timers for a

stopped connection continue to advance, so receives may time out and return a

null message while the connection is stopped.

If MessageListeners are running when stop is invoked, stop must wait until all

of them have returned before it may return. While these MessageListeners are

completing, they must have the full services of the connection available to

them.

4.3.5 Closing a Connection

Since a provider typically allocates significant resources outside the JVM on

behalf of a connection, clients should close these resources when they are not

needed. Relying on garbage collection to eventually reclaim these resources

may not be timely enough.

A close terminates all pending message receives on the connection’s session’s

consumers. The receives may return with a message or null depending on

whether or not there was a message available at the time of the close.

Note that in this case, the message consumer will likely get an exception if it is

attempting to use the facilities of the now closed connection while processing

its last message. A developer must take this ‘last message’ case into account
JMS Common Facilities—August 27, 2001 53

4

when writing a message consumer. It bears repeating that the message

consumer cannot rely on a null return value to indicate this ‘last message’ case.

If one or more of the connection’s session’s message listeners is processing a

message at the point when connection close is invoked, all the facilities of the

connection and its sessions must remain available to those listeners until they

return control to the JMS provider.

When connection close is invoked it should not return until message

processing has been shut down in an orderly fashion. This means that all

message listeners that may have been running have returned, and that all

pending receives have returned.

If a connection is closed, there is no need to close its constituent objects. The

connection close is sufficient to signal the JMS provider that all resources for

the connection should be released.

Closing a connection must roll back the transactions in progress on its

transacted sessions*. Closing a connection does NOT force an

acknowledgement of client-acknowledged sessions. Invoking the acknowledge
method of a received message from a closed connection’s sessions must throw

an IllegalStateException. These semantics insure that closing a connection does

not cause messages to be lost for queues and durable subscriptions that require

reliable processing by a subsequent execution of their JMS client.

Once a connection has been closed, an attempt to use it or its sessions or their

message consumers and producers must throw an IllegalStateException (calls to

the close method of these objects must be ignored). It is valid to continue to use

message objects created or received via the connection, with the exception of a

received message’s acknowledge method.

Closing a closed connection must NOT throw an exception.

4.3.6 Sessions

A Connection is a factory for Sessions that use its underlying connection to a

JMS provider for producing and consuming messages.

* The term ‘transacted session’ refers to the case where a session’s commit and rollback methods are used to
demarcate a transaction local to the session. In the case where a session’s work is coordinated by an external
transaction manager, a session’s commit and rollback methods are not used and the result of a closed ses-
sion’s work is determined later by the transaction manager.
54 Java Message Service —August 27, 2001

4

4.3.7 ConnectionMetaData

A Connection provides a ConnectionMetaData object. This object provides the

latest version of JMS supported by the provider as well as the provider’s

product name and version.

It also provides a list of the JMS defined property names supported by the

connection.

4.3.8 ExceptionListener

If a JMS provider detects a problem with a connection, it will inform the

connection’s ExceptionListener if one has been registered. It does this by calling

the listener’s onException() method, passing it a JMSException describing the

problem.

This allows a client to be asynchronously notified of a problem. Some

connections only consume messages, so they would have no other way to learn

their connection has failed.

A Connection serializes execution of its ExceptionListener.

A JMS provider should attempt to resolve connection problems itself prior to

notifying the client of them.

The exceptions delivered to ExceptionListener are those that have no other place

to be reported. If an exception is thrown on a JMS call it, by definition, must

not be delivered to an ExceptionListener (in other words, ExceptionListener is not

for the purpose of monitoring all exceptions thrown by a connection).

4.4 Session
A JMS Session is a single-threaded context* for producing and consuming

messages. Although it may allocate provider resources outside the Java virtual

machine, it is considered a lightweight JMS object.

* There are no restrictions on the number of threads that can use a Session object or those it creates. The restric-
tion is that the resources of a Session should not be used concurrently by multiple threads. It is up to the user
to insure that this concurrency restriction is met. The simplest way to do this is to use one thread. In the case
of asynchronous delivery, use one thread for setup in stopped mode and then start asynchronous delivery.
In more complex cases the user must provide explicit synchronization.
JMS Common Facilities—August 27, 2001 55

4

A Session serves several purposes:

• It is a factory for its MessageProducers and MessageConsumers.

• It is a factory for temporary destinations.

• It provides a way to create Destination objects for those clients that need to

dynamically manipulate provider-specific destination names.

• It supplies provider-optimized message factories.

• It supports a single series of transactions that combine work spanning this

session’s producers and consumers into atomic units.

• It defines a serial order for the messages it consumes and the messages it

produces.

• It retains messages it consumes until they have been acknowledged.

• It serializes execution of MessageListeners registered with it.

4.4.1 Closing a Session

Since a provider may allocate some resources on behalf of a session outside the

JVM, clients should close them when they are not needed. Relying on garbage

collection to eventually reclaim these resources may not be timely enough. The

same is true for the MessageProducers and MessageConsumers created by a

session.

Session close terminates all message processing on the session. It must handle

the shutdown of pending receives by the session’s consumers or a running

message listener, as described in Section 4.3.5, “Closing a Connection.”

Session close is the only session method that may be invoked from a thread of

control separate from the one that is currently controlling the session.

When session close is invoked, it should not return until its message

processing has been shut down in an orderly fashion. This means that none of

its message listeners are running, and that if there is a pending receive, it has

returned with either null or a message.

When a session is closed, there is no need to close its constituent message

producers and consumers. The session close is sufficient to signal the JMS

provider that all resources for the session should be released.

Closing a transacted session must roll back its transaction in progress. Closing

a client-acknowledged session does NOT force an acknowledge.
56 Java Message Service —August 27, 2001

4

Once a session has been closed, an attempt to use it or its message consumers

and producers must throw an IllegalStateException (calls to the close method of

these objects must be ignored). It is valid to continue to use message objects

created or received via the session, with the exception of a received message’s

acknowledge method.

Closing a closed session must NOT throw an exception.

4.4.2 MessageProducer and MessageConsumer Creation

A session can create and service multiple MessageProducers and

MessageConsumers. See Section 4.5, “MessageConsumer,” and Section 4.6,

“MessageProducer,” for information on their creation and use.

Although a session may create multiple producers and consumers, they are

restricted to serial use. In effect, only a single logical thread of control can use

them. This is explained in more detail later.

4.4.3 Creating Temporary Destinations

Although sessions are used to create temporary destinations, this is only for

convenience. Their scope is actually the entire connection. Their lifetime is that

of their connection, and any of the connection’s sessions is allowed to create a

MessageConsumer for them.

Temporary destinations (TemporaryQueue or TemporaryTopic objects) are

destinations that are system-generated uniquely for their connection. Only

their own connection is allowed to create MessageConsumers for them.

One typical use for a temporary destination is as the JMSReplyTo destination

for service requests.

Each TemporaryQueue or TemporaryTopic object is unique. It cannot be copied.

Since temporary destinations may allocate resources outside the JVM, they

should be deleted if they are no longer needed. They will be automatically

deleted when they are garbage collected or when their connection is closed.

4.4.4 Creating Destinations

Most clients will use Destinations that are JMS administered objects that they

have looked up via JNDI. This is the most portable approach.
JMS Common Facilities—August 27, 2001 57

4

Some specialized clients may need to create Destinations by dynamically

manufacturing one using a provider-specific destination name. Sessions

provide a JMS provider-specific method for doing this.

4.4.5 Optimized Message Implementations

A session provides message create methods that use provider-optimized

implementations. This allows a provider to minimize its overhead for handling

messages.

Sessions must be capable of sending all JMS messages regardless of how they

may be implemented.

4.4.6 Conventions for Using a Session

Sessions are designed for serial use by one thread at a time. The only exception

to this occurs during the orderly shutdown of the session or its connection. See

Section 4.3.5, “Closing a Connection,” and Section 4.4.1, “Closing a Session,”

for further details.

One typical use is to have a thread block on a synchronous MessageConsumer
until a message arrives. The thread may then use one or more of the session’s

MessageProducers.

It is erroneous for a client to use a thread of control to attempt to

synchronously receive a message if there is already a client thread of control

waiting to receive a message in the same session.

Another typical use is to have one thread set up a session by creating its

producers and one or more asynchronous consumers. In this case, the message

producers are exclusively for the use of the consumer’s message listeners.

Since the session serializes execution of its consumer’s MessageListeners, they

can safely share the resources of their session.

If a connection is left in stopped mode while its sessions are being set up, a

client does not have to deal with messages arriving before the client is fully

prepared to handle them. This is the preferred strategy because it eliminates

the possibility of unanticipated conflicts between setup and message

processing. It is possible to create and set up a session while a connection is

receiving messages. In this case, more care is required to insure that a session’s

MessageProducers, MessageConsumers, and MessageListeners are created in the

right order. For instance, a bad order may cause a MessageListener to use a
58 Java Message Service —August 27, 2001

4

MessageProducer that has yet to be created; or messages may arrive in the

wrong order due to the order in which MessageListeners are registered.

If a client desires to have one thread producing messages while others

consume them, the client should use a separate session for its producing

thread.

Once a connection has been started, all its sessions with a registered message

listener are dedicated to the thread of control that delivers messages to them. It

is erroneous for client code to use such a session from another thread of

control. The only exception to this is the use of the session or connection close

method.

One consequence of the session’s single-thread-of-control restriction is that a

session with message listeners cannot also be used to synchronously receive

messages. Either the session is dedicated to the thread of control used for

delivery to message listeners, or it is dedicated to a thread of control initiated

by client code. It is erroneous to attempt to combine both in the same session.

Another consequence is that a connection must be in stopped mode to set up a

session with more than one message listener. The reason is that when a

connection is actively delivering messages, once the first message listener for a

session has been registered, the session is now controlled by the thread of

control that delivers messages to it. At this point a client thread of control

cannot be used to further configure the session.

It should be natural for most clients to partition their work into sessions. This

model allows clients to start simply and incrementally add message processing

complexity as their need for concurrency grows.

4.4.7 Transactions

A Session may optionally be specified as transacted. Each transacted session

supports a single series of transactions. Each transaction groups a set of

produced messages and a set of consumed messages into an atomic unit of

work. In effect, transactions organize a session’s input message stream and

output message stream into series of atomic units. When a transaction

commits, its atomic unit of input is acknowledged and its associated atomic

unit of output is sent. If a transaction rollback is done, its produced messages

are destroyed and its consumed messages are automatically recovered. For

more information on session recovery, see Section 4.4.11, “Message

Acknowledgment.”
JMS Common Facilities—August 27, 2001 59

4

A transaction is completed using its session’s commit() or rollback() method. The

completion of a session’s current transaction automatically begins the next. The

result is that a transacted session always has a current transaction within

which its work is done.

JTS or some other transaction monitor facility may be used to combine a

session’s transaction with transactions on other resources (databases, other JMS

sessions, etc.). Since Java distributed transactions are controlled via the JTA

transaction demarcation API, use of the session’s commit and rollback methods

in this context throws a JMS TransactionInProgressException.

4.4.8 Distributed Transactions

JMS does not require that a provider support distributed transactions;

however, it does require that if a provider supplies this support, it should be

done via the JTA XAResource API.

A JMS provider may also be a distributed transaction monitor. If it is, it should

provide control of the transaction via the JTA API.

Although it is possible for a JMS client to handle distributed transactions

directly, it is unlikely that many JMS clients will do this. Support for JTA in

JMS is targeted at systems vendors who will be integrating JMS into their

application server products. See Chapter 8, “JMS Application Server Facilities,”

for more information.

4.4.9 Multiple Sessions

A client may create multiple sessions. Each session is an independent producer

and consumer of messages.

For Pub/Sub, if two sessions each have a TopicSubscriber that subscribes to the

same Topic, each subscriber is given each message. Delivery to one subscriber

does not block if the other gets behind.

For PTP, JMS does not specify the semantics of concurrent QueueReceivers for

the same queue; however, JMS does not prohibit a provider from supporting

this.
60 Java Message Service —August 27, 2001

4

4.4.10 Message Order

JMS clients need to understand when they can depend on message order and

when they cannot.

4.4.10.1 Order of Message Receipt

Messages consumed by a session define a serial order. This order is important

because it defines the effect of message acknowledgment. See Section 4.4.11,

“Message Acknowledgment,” for more details. The messages for each of a

session’s consumers are interleaved in a session’s input message stream.

JMS defines that messages sent by a session to a destination must be received

in the order in which they were sent (see Section 4.4.10.2, “Order of Message

Sends,” for a few qualifications). This defines a partial ordering constraint on a

session’s input message stream.

JMS does not define order of message receipt across destinations or across a

destination’s messages sent from multiple sessions. This aspect of a session’s

input message stream order is timing-dependent. It is not under application

control.

4.4.10.2 Order of Message Sends

Although clients loosely view the messages they produce within a session as

forming a serial stream of sent messages, the total ordering of this stream is not

significant. The only ordering that is visible to receiving clients is the order of

messages a session sends to a particular destination. Several things can affect

this order:

• Messages of higher priority may jump ahead of previous lower-priority

messages.

• A client may not receive a NON_PERSISTENT message due to a JMS

provider failure.

• If both PERSISTENT and NON_PERSISTENT messages are sent to a

destination, order is only guaranteed within delivery mode. That is, a later

NON_PERSISTENT message may arrive ahead of an earlier PERSISTENT

message; however, it will never arrive ahead of an earlier

NON_PERSISTENT message with the same priority.

• A client may use a transacted session to group its sent messages into atomic

units (the producer component of a JMS transaction). A transaction’s order
JMS Common Facilities—August 27, 2001 61

4

of messages to a particular destination is significant. The order of sent

messages across destinations is not significant. See Section 4.4.7,

“Transactions,” for more information.

4.4.11 Message Acknowledgment

If a session is transacted, message acknowledgment is handled automatically

by commit, and recovery is handled automatically by rollback.

If a session is not transacted, there are three acknowledgment options, and

recovery is handled manually:

• DUPS_OK_ACKNOWLEDGE - This option instructs the session to lazily

acknowledge the delivery of messages. This is likely to result in the delivery

of some duplicate messages if JMS fails, so it should be used only by

consumers that are tolerant of duplicate messages. Its benefit is the

reduction of session overhead achieved by minimizing the work the session

does to prevent duplicates.

• AUTO_ACKNOWLEDGE - With this option, the session automatically

acknowledges a client’s receipt of a message when it has either successfully

returned from a call to receive or the MessageListener it has called to process

the message successfully returns.

• CLIENT_ACKNOWLEDGE - With this option, a client acknowledges a

message by calling the message’s acknowledge method. Acknowledging a

consumed message automatically acknowledges the receipt of all messages

that have been delivered by its session.

When CLIENT_ACKNOWLEDGE mode is used, a client may build up a large

number of unacknowledged messages while attempting to process them. A

JMS provider should provide administrators with a way to limit client over-

run so that clients are not driven to resource exhaustion and ensuing failure

when some resource they are using is temporarily blocked.

A session’s recover method is used to stop a session and restart it with its first

unacknowledged message. In effect, the session’s series of delivered messages

is reset to the point after its last acknowledged message. The messages it now

delivers may be different from those that were originally delivered due to

message expiration and the arrival of higher-priority messages.

A session must set the redelivered flag of messages it redelivers due to a

recovery.
62 Java Message Service —August 27, 2001

4

4.4.12 Duplicate Delivery of Messages

A JMS provider must never deliver a second copy of an acknowledged

message.

When a client uses the AUTO_ACKNOWLEDGE mode, it is not in direct

control of message acknowledgment. Since such clients cannot know for

certain if a particular message has been acknowledged, they must be prepared

for redelivery of the last consumed message. This can be caused by the client

completing its work just prior to a failure that prevents the message

acknowledgment from occurring. Only a session’s last consumed message is

subject to this ambiguity. The JMSRedelivered message header field will be set

for a message redelivered under these circumstances.

4.4.13 Duplicate Production of Messages

JMS providers must never produce duplicate messages. This means that a

client that produces a message can rely on its JMS provider to insure that

consumers of the message will receive it only once. No client error can cause a

provider to duplicate a message.

If a failure occurs between the time a client commits its work on a Session and

the commit method returns, the client cannot determine if the transaction was

committed or rolled back. The same ambiguity exists when a failure occurs

between the non-transactional send of a PERSISTENT message and the return

from the sending method.

It is up to a JMS application to deal with this ambiguity. In some cases, this

may cause a client to produce functionally duplicate messages.

A message that is redelivered due to session recovery is not considered a

duplicate message.

4.4.14 Serial Execution of Client Code

Even though the Java language provides built-in support for multithreading,

writing multithreaded programs is still more difficult than writing single-

threaded ones.

For this reason, JMS does not cause concurrent execution of client code unless

a client explicitly requests it. One way this is done is to define that a session

serializes all asynchronous delivery of messages.
JMS Common Facilities—August 27, 2001 63

4

To receive messages asynchronously, a client registers an object that

implements the JMS MessageListener interface with a MessageConsumer. In effect,
a Session uses a single thread to run all its MessageListeners. While the thread is

busy executing one listener, all other messages to be asynchronously delivered

to the session must wait.

4.4.15 Concurrent Message Delivery

Clients that desire concurrent delivery can use multiple sessions. In effect, each

session’s listener thread runs concurrently. While a listener on one session is

executing, a listener on another session may also be executing.

Note that JMS itself does not provide the facilities for concurrently processing

a topic’s message set (the messages delivered to a single consumer). A client

could use a single consumer and implement all the multithreading logic

needed to concurrently process the messages; however, it is not possible to do

this reliably, because JMS does not have the transaction facilities needed to

handle the concurrent transactions this would require.

4.5 MessageConsumer
A client uses a MessageConsumer to receive messages from a destination. A

MessageConsumer is created by passing a destination to a session’s createReceiver
or createSubscriber method.

A consumer can be created with a message selector. This allows the client to

restrict the messages delivered to the consumer to those that match the

selector. See Section 3.8.1, “Message Selector,” for more information.

A client may either synchronously receive a consumer’s messages or have the

provider asynchronously deliver them as they arrive.

4.5.1 Synchronous Delivery

A client can request the next message from a MessageConsumer using one of its

receive methods. There are several variations of receive that allow a client to

poll or wait for the next message.
64 Java Message Service —August 27, 2001

4

4.5.2 Asynchronous Delivery

A client can register an object that implements the JMS MessageListener
interface with a MessageConsumer. As messages arrive for the consumer, the

provider delivers them by calling the listener’s onMessage method.

It is possible for a listener to throw a RuntimeException; however, this is

considered a client programming error. Well-behaved listeners should catch

such exceptions and attempt to divert messages causing them to some form of

application-specific ‘unprocessable message’ destination.

The result of a listener throwing a RuntimeException depends on the session’s

acknowledgment mode.

• AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE - the message

will be immediately redelivered. The number of times a JMS provider will

redeliver the same message before giving up is provider-dependent. The

JMSRedelivered message header field will be set for a message redelivered

under these circumstances.

• CLIENT_ACKNOWLEDGE - the next message for the listener is delivered.

If a client wishes to have the previous unacknowledged message

redelivered, it must manually recover the session.

• Transacted Session - the next message for the listener is delivered. The client

can either commit or roll back the session (in other words, a

RuntimeException does not automatically rollback the session).

JMS providers should flag clients with message listeners that are throwing

RuntimeExceptions as possibly malfunctioning.

See Section 4.4.14, “Serial Execution of Client Code,” for information about

how onMessage calls are serialized by a session.

4.6 MessageProducer
A client uses a MessageProducer to send messages to a Destination. A

MessageProducer is created by passing a destination to a session’s createSender or

createPublisher method.

A client also has the option of creating a producer without supplying a

destination. In this case, a destination must be input on every send operation.

A typical use for this style of producer is to send replies to requests using the

request’s JMSReplyTo destination.
JMS Common Facilities—August 27, 2001 65

4

A client can specify a default delivery mode, priority, and time-to-live for

messages sent by a producer. It can also specify delivery mode, priority, and

time-to-live per message.

Each time a client creates a MessageProducer, it defines a new sequence of

messages that have no ordering relationship with the messages it has

previously sent.

See Section 3.4.9, “JMSExpiration,” for more information on time-to-live. See

Section 3.4.10, “JMSPriority,” for more information on priority.

4.7 Message Delivery Mode
JMS supports two modes of message delivery.

• The NON_PERSISTENT mode is the lowest-overhead delivery mode

because it does not require that the message be logged to stable storage. A

JMS provider failure can cause a NON_PERSISTENT message to be lost.

• The PERSISTENT mode instructs the JMS provider to take extra care to

insure the message is not lost in transit due to a JMS provider failure.

A JMS provider must deliver a NON_PERSISTENT message at-most-once. This

means that it may lose the message, but it must not deliver it twice.

A JMS provider must deliver a PERSISTENT message once-and-only-once. This

means a JMS provider failure must not cause it to be lost, and it must not

deliver it twice.

PERSISTENT (once-and-only-once) and NON_PERSISTENT (at-most-once)

message delivery are a way for a JMS client to select between delivery

techniques that may lose a messages if a JMS provider dies and those which

take extra effort to insure that messages can survive such a failure. There is

typically a performance/reliability trade-off implied by this choice. When a

client selects the NON_PERSISTENT delivery mode, it is indicating that it

values performance over reliability; a selection of PERSISTENT reverses the

requested trade-off.

The use of PERSISTENT messages does not guarantee that all messages are always
delivered to every eligible consumer. See Section 4.10, “Reliability,” for further

discussion on this topic.
66 Java Message Service —August 27, 2001

4

4.8 Message Time-To-Live
A client can specify a time-to-live value in milliseconds for each message it

sends. This value defines a message expiration time that is the sum of the

message’s time-to-live and the GMT it is sent (for transacted sends, this is the

time the client sends the message, not the time the transaction is committed).

A JMS provider should do its best to expire messages accurately; however, JMS

does not define the accuracy provided. It is not acceptable to simply ignore

time-to-live.

For more information on message expiration, see Section 3.4.9,

“JMSExpiration.”

4.9 Exceptions
JMSException is the base class for all JMS exceptions. See Chapter 7, “JMS

Exceptions,” for more information.

4.10 Reliability
Most clients should use producers that produce PERSISTENT messages. This

insures once-and-only-once message delivery for messages delivered from a

queue or a durable subscription.

In some cases, an application may only require at-most-once message delivery

for some of its messages. This is accomplished by publishing

NON_PERSISTENT messages. These messages typically have lower overhead;

however, they may be lost if a JMS provider fails. Both PERSISTENT and

NON_PERSISTENT messages can be published to the same destination.

Normally, a consumer fully processes each message before acknowledging its

receipt to JMS. This insures that JMS does not discard a partially processed

message due to machine failure, etc. A consumer accomplishes this by using

either a transacted or CLIENT_ACKNOWLEDGE session. Unacknowledged

messages redelivered due to system failure must have the JMSRedelivered
message header field set by the JMS provider.

If a NON_PERSISTENT message is delivered to a durable subscription or a

queue, delivery is not guaranteed if the durable subscription becomes inactive

(that is, if it has no current subscriber) or if the JMS provider is shut down and

later restarted.
JMS Common Facilities—August 27, 2001 67

4

It is expected that important messages will be produced with a PERSISTENT delivery
mode within a transaction and will be consumed within a transaction from a non-
temporary queue or a durable subscription.

When this is done, applications have the highest level of assurance that a

message has been properly produced, reliably delivered, and accurately

consumed. Non-transactional production and consumption can also achieve

the same level of assurance; however, this requires careful programming.

A JMS provider may have resource restrictions that limit the number of

messages that can be held for high-volume destinations or non-responsive

clients. If messages are dropped due to resource limits, this is usually a serious

administrative issue that needs attention. Correct functioning of JMS requires

that clients are responsive and that adequate resources to service them are

available.

Once-and-only-once message delivery, as described in this specification, has the
important caveat that it does not cover message destruction due to message expiration
or other administrative destruction criteria. It also does not cover loss due to resource
restrictions. Configuration of adequate resources and processing power for JMS
applications is the job of administrators, who must be aware of their JMS provider’s
reliability features.

NON_PERSISTENT messages, nondurable subscriptions, and temporary

destinations are by definition unreliable. A JMS provider shutdown or failure

will likely cause the loss of NON_PERSISTENT messages and the loss of

messages held by temporary destinations and nondurable subscriptions. The

termination of an application will likely cause the loss of messages held by

nondurable subscriptions and temporary destinations of the application
68 Java Message Service —August 27, 2001

JMSPoint-to-PointModel 5
5.1 Overview
Point-to-point systems are about working with queues of messages. They are

point-to-point in that a client sends a message to a specific queue. Some PTP

systems blur the distinction between PTP and Pub/Sub by providing system

clients that automatically distribute messages.

It is common for a client to have all its messages delivered to a single queue.

Like any generic mailbox, a queue can contain a mixture of messages. And, like

real mailboxes, creating and maintaining each queue is somewhat costly. Most

queues are created administratively and are treated as static resources by their

clients.

The JMS PTP model defines how a client works with queues: how it finds

them, how it sends messages to them, and how it receives messages from them.

5.2 Queue Management
JMS does not define facilities for creating, administering, or deleting long-lived

queues (it does provide such a mechanism for TemporaryQueues). Since most

clients use statically defined queues, this is not a problem.
69

5

5.3 Queue
A Queue object encapsulates a provider-specific queue name. It is the way a

client specifies the identity of a queue to JMS methods.

The actual length of time messages are held by a queue and the consequences

of resource overflow are not defined by JMS.

See Section 4.2, “Administered Objects,” for more information about JMS

Destination objects.

5.4 TemporaryQueue
A TemporaryQueue is a unique Queue object created for the duration of a

QueueConnection. It is a system-defined queue that can be consumed only by

the QueueConnection that created it.

See Section 4.4.3, “Creating Temporary Destinations,” for more information.

5.5 QueueConnectionFactory
A client uses a QueueConnectionFactory to create QueueConnections with a JMS

PTP provider.

See Section 4.2, “Administered Objects,” for more information about JMS

ConnectionFactory objects.

5.6 QueueConnection
A QueueConnection is an active connection to a JMS PTP provider. A client uses

a QueueConnection to create one or more QueueSessions for producing and

consuming messages.

See Section 4.3, “Connection,” for more information.

5.7 QueueSession
A QueueSession provides methods for creating QueueReceivers, QueueSenders,

QueueBrowsers, and TemporaryQueues.
70 Java Message Service—August 27, 2001

5

If there are messages that have been received but not acknowledged when a

QueueSession terminates, these messages must be retained and redelivered

when a consumer next accesses the queue.

See Section 4.4, “Session,” for more information.

5.8 QueueReceiver
A client uses a QueueReceiver for receiving messages that have been delivered

to a queue.

Although it is possible to have two sessions with a QueueReceiver for the same

queue, JMS does not define how messages are distributed between the

QueueReceivers.

If a QueueReceiver specifies a message selector, the messages that are not

selected remain on the queue. By definition, a message selector allows a

QueueReceiver to skip messages. This means that when the skipped messages

are eventually read, the total ordering of the reads does not retain the partial

order defined by each message producer. Only QueueReceivers without a

message selector will read messages in message producer order.

For more information, see Section 4.5, “MessageConsumer.”

5.9 QueueSender
A client uses a QueueSender to send messages to a queue.

For more information, see Section 4.6, “MessageProducer.”

5.10 QueueBrowser
A client uses a QueueBrowser to look at messages on a queue without removing

them.

The browse methods return a java.util.Enumeration that is used to scan the

queue’s messages. It may be an enumeration of the entire content of a queue,

or it may contain only the messages matching a message selector.

Messages may be arriving and expiring while the scan is done. JMS does not

require the content of an enumeration to be a static snapshot of queue content.

Whether these changes are visible or not depends on the JMS provider.
JMS Point-to-Point Model—August 27, 2001 71

5

5.11 QueueRequestor
JMS provides a QueueRequestor helper class to simplify making service

requests.

The QueueRequestor constructor is given a QueueSession and a destination

queue. It creates a TemporaryQueue for the responses and provides a request
method that sends the request message and waits for its reply.

This is a basic request/reply abstraction that should be sufficient for most uses.

JMS providers and clients can create more sophisticated versions.

5.12 Reliability
A queue is typically created by an administrator and exists for a long time. It is

always available to hold messages sent to it, whether or not the client that

consumes its messages is active. For this reason, a client does not have to take

any special precautions to insure that it does not miss messages.
72 Java Message Service—August 27, 2001

JMSPublish/SubscribeModel 6
6.1 Overview
The JMS Pub/Sub model defines how JMS clients publish messages to, and

subscribe to messages from, a well-known node in a content-based hierarchy.

JMS calls these nodes topics.

In this section, the terms publish and subscribe are used in place of the more

generic terms produce and consume used previously.

A topic can be thought of as a mini message broker that gathers and distributes

messages addressed to it. By relying on the topic as an intermediary, message

publishers are kept independent of subscribers and vice versa. The topic

automatically adapts as both publishers and subscribers come and go.

Publishers and subscribers are active when the Java objects that represent them

exist. JMS also supports the optional durability of subscribers that ‘remembers’

the existence of them while they are inactive.

6.2 Pub/Sub Latency
Since there is typically some latency in all pub/sub systems, the exact

messages seen by a subscriber may vary depending on how quickly a JMS

provider propagates the existence of a new subscriber and the length of time a

provider retains messages in transit.

For instance, some messages from a distant publisher may be missed because it

may take a second for the existence of a new subscriber to be propagated
73

6

system-wide. When a new subscriber is created, it may receive messages sent

earlier because a provider may still have them available.

JMS does not define the exact semantics that apply during the interval when a

pub/sub provider is adjusting to a new client. JMS semantics only apply once

the provider has reached a ‘steady state’ with respect to a new client.

6.3 Durable Subscription
Nondurable subscriptions last for the lifetime of their subscriber object. This

means that a client will only see the messages published on a topic while its

subscriber is active. If the subscriber is not active, it is missing messages

published on its topic.

At the cost of higher overhead, a subscriber can be made durable. A durable
subscriber registers a durable subscription with a unique identity that is retained

by JMS. Subsequent subscriber objects with the same identity resume the

subscription in the state it was left in by the prior subscriber. If there is no

active subscriber for a durable subscription, JMS retains the subscription’s

messages until they are received by the subscription or until they expire.

All JMS providers must be able to run JMS applications that dynamically create

and delete durable subscriptions. Some JMS providers may, in addition,

provide facilities to administratively configure durable subscriptions. If a

durable subscription has been administratively configured, it is valid for it to

silently override the subscription specified by the client.

An inactive durable subscription is one that exists but does not currently have a

message consumer subscribed to it.

6.4 Topic Management
Some products require that topics be statically defined with associated

authorization control lists, and so on; others don’t even have the concept of

topic administration.

JMS does not define facilities for creating, administering, or deleting topics.

A special type of topic called a TemporaryTopic is provided for creating a Topic
that is unique to a TopicConnection. See Section 6.6, “TemporaryTopic,” for more

details.
74 Java Message Service—August 27, 2001

6

6.5 Topic
A Topic object encapsulates a provider-specific topic name. It is the way a client

specifies the identity of a topic to JMS methods.

Many Pub/Sub providers group topics into hierarchies and provide various

options for subscribing to parts of the hierarchy. JMS places no restrictions on

what a Topic object represents. It might be a leaf in a topic hierarchy, or it might

be a larger part of the hierarchy (for subscribing to a general class of

information).

The organization of topics and the granularity of subscriptions to them is an

important part of a Pub/Sub application’s architecture. JMS does not specify a

policy for how this should be done. If an application takes advantage of a

provider-specific topic grouping mechanism, it should document this. If the

application is installed using a different provider, it is the job of the

administrator to construct an equivalent topic architecture and create

equivalent Topic objects.

6.6 TemporaryTopic
A TemporaryTopic is a unique Topic object created for the duration of a

TopicConnection. It is a system-defined Topic that can be consumed only by the

TopicConnection that created it.

By definition, it does not make sense to create a durable subscription to a

temporary topic. To do this is a programming error that may or may not be

detected by a JMS provider.

See Section 4.4.3, “Creating Temporary Destinations,” for more information.

6.7 TopicConnectionFactory
A client uses a TopicConnectionFactory to create TopicConnections with a JMS

Pub/Sub provider.

See Section 4.2, “Administered Objects,” for more information about JMS

ConnectionFactory objects.
JMS Publish/Subscribe Model—August 27, 2001 75

6

6.8 TopicConnection
A TopicConnection is an active connection to a JMS Pub/Sub provider. A client

uses a TopicConnection to create one or more TopicSessions for producing and

consuming messages.

See Section 4.3, “Connection,” for more information.

6.9 TopicSession
A TopicSession provides methods for creating TopicPublishers, TopicSubscribers,

and TemporaryTopics. It also provides the unsubscribe method for deleting its

client’s durable subscriptions.

If there are messages that have been received but not acknowledged when a

TopicSession terminates, a durable TopicSubscriber must retain and redeliver

them; a nondurable subscriber need not do so.

See Section 4.4, “Session,” for more information.

6.10 TopicPublisher
A client uses a TopicPublisher for publishing messages on a topic. TopicPublisher
is the Pub/Sub variant of a JMS MessageProducer. See Section 4.6,

“MessageProducer,” for a description of its common features.

6.11 TopicSubscriber
A client uses a TopicSubscriber for receiving messages that have been published

to a topic. TopicSubscriber is the Pub/Sub variant of a JMS MessageConsumer. For

more information, see Section 4.5, “MessageConsumer.”

Ordinary TopicSubscribers are not durable. They only receive messages that are

published while they are active.

Messages filtered out by a subscriber’s message selector will never be

delivered to the subscriber. From the subscriber’s perspective, they simply

don’t exist.

In some cases, a connection may both publish and subscribe to a topic. The

subscriber NoLocal attribute allows a subscriber to inhibit the delivery of

messages published by its own connection.
76 Java Message Service—August 27, 2001

6

A TopicSession allows the creation of multiple TopicSubscribers per destination, it

will deliver each message for a destination to each TopicSubscriber eligible to

receive it. Each copy of the message is treated as a completely separate

message. Work done on one copy has no effect on any other; acknowledging

one does not acknowledge any other; one message may be delivered

immediately, while another waits for its consumer to process messages ahead

of it.

6.11.1 Durable TopicSubscriber

If a client needs to receive all the messages published on a topic, including the

ones published while the subscriber is inactive, it uses a durable

TopicSubscriber. JMS retains a record of this durable subscription and insures

that all messages from the topic’s publishers are retained until either they are

acknowledged by this durable subscriber or they have expired.

Sessions with durable subscribers must always provide the same client

identifier. In addition, each client must specify a name that uniquely identifies

(within client identifier) each durable subscription it creates. Only one session

at a time can have a TopicSubscriber for a particular durable subscription. See

Section 4.3.2, “Client Identifier,” for more information.

A client can change an existing durable subscription by creating a durable

TopicSubscriber with the same name and a new topic and/or message selector.

Changing a durable subscription is equivalent to deleting and recreating it.

TopicSessions provide the unsubscribe method for deleting a durable

subscription created by their client. This deletes the state being maintained on

behalf of the subscriber by its provider. It is erroneous for a client to delete a

durable subscription while it has an active TopicSubscriber for it or while a

message received by it is part of a current transaction or has not been

acknowledged in the session.

6.12 Recovery and Redelivery
Unacknowledged messages of a nondurable subscriber should be able to be

recovered for the lifetime of that nondurable subscriber. When a nondurable

subscriber terminates, messages waiting for it will likely be dropped whether

or not they have been acknowledged.

Only durable subscriptions are reliably able to recover unacknowledged

messages.
JMS Publish/Subscribe Model—August 27, 2001 77

6

6.13 Administering Subscriptions
Ideally, publishers and subscribers are dynamically registered by a provider

when they are created. From the client viewpoint this is always the case. From

the administrator’s viewpoint, other tasks may be needed to support the

creation of publishers and subscribers.

The amount of resources allocated for message storage and the consequences

of resource overflow are not defined by JMS.

6.14 TopicRequestor
JMS provides a TopicRequestor helper class to simplify making service requests.

The TopicRequestor constructor is given a TopicSession and a destination topic. It

creates a TemporaryTopic for the responses and provides a request() method that

sends the request message and waits for its reply.

This is a basic request/reply abstraction that should be sufficient for most uses.

JMS providers and clients are free to create more sophisticated versions.

6.15 Reliability
When all messages for a topic must be received, a durable subscriber should be

used. JMS insures that messages published while a durable subscriber is

inactive are retained by JMS and delivered when the subscriber subsequently

becomes active.

Nondurable subscribers should be used only when missed messages are

tolerable.

Table 6-1 Pub/Sub Reliability

How Published Nondurable Subscriber Durable Subscriber

NON_PERSISTENT at-most-once

(missed if inactive)

at-most-once

PERSISTENT once-and-only-once

(missed if inactive)

once-and-only-once
78 Java Message Service—August 27, 2001

JMSExceptions 7
7.1 Overview
This chapter provides an overview of JMS exception handling and defines the

standard JMS exceptions.

7.2 The JMSException
JMS defines JMSException as the root class for exceptions thrown by JMS

methods. JMSException is a checked exception and catching it provides a

generic way of handling all JMS related exceptions. JMSException provides the

following information:

• A provider-specific string describing the error - This string is the standard

Java exception message, and is available via getMessage().

• A provider-specific string error code

• A reference to another exception - Often a JMS exception will be the result of

a lower level problem. If appropriate, this lower level exception can be

linked to the JMS exception.

JMS methods include only JMSException in their signatures. JMS methods can

throw any JMS standard exception as well as any JMS provider-specific

exception. The javadoc for JMS methods documents only the mandatory
exception cases.
79

7

7.3 Standard Exceptions
In addition to JMSException, JMS defines several additional exceptions that

standardize the reporting of basic error conditions.

There are only a few cases where JMS mandates that a specific JMS exception

must be thrown. These cases are indicated by the words must be in the

exception description. These cases are the only ones on which client logic
should depend on a specific problem resulting in a specific JMS exception being
thrown.

In the remainder of cases, it is strongly suggested that JMS providers use one

of the standard exceptions where possible. JMS providers may also derive

provider-specific exceptions from these if needed.

JMS defines the following standard exceptions:

• IllegalStateException: This exception is thrown when a method is invoked at

an illegal or inappropriate time or if the provider is not in an appropriate

state for the requested operation. For example, this exception must be
thrown if Session.commit() is called on a non-transacted session.

• JMSSecurityException: This exception must be thrown when a provider

rejects a user name/password submitted by a client. It may also be thrown

for any case where a security restriction prevents a method from

completing.

• InvalidClientIDException: This exception must be thrown when a client

attempts to set a connection’s client identifier to a value that is rejected by a

provider.

• InvalidDestinationException: This exception must be thrown when a

destination is either not understood by a provider or is no longer valid.

• InvalidSelectorException: This exception must be thrown when a JMS client

attempts to give a provider a message selector with invalid syntax.

• MessageEOFException: This exception must be thrown when an unexpected

end of stream has been reached when a StreamMessage or BytesMessage is

being read.

• MessageFormatException: This exception must be thrown when a JMS client

attempts to use a data type not supported by a message or attempts to read

data in a message as the wrong type. It must also be thrown when

equivalent type errors are made with message property values. For example,

this exception must be thrown if StreamMessage.writeObject() is given an
80 Java Message Service—August 27, 2001

7

unsupported class or if StreamMessage.readShort() is used to read a boolean

value. This exception also must be thrown if a provider is given a type of

message it cannot accept. Note that the special case of a failure caused by

attempting to read improperly formatted String data as numeric values

must throw the java.lang.NumberFormatException.

• MessageNotReadableException: This exception must be thrown when a JMS

client attempts to read a write-only message.

• MessageNotWriteableException: This exception must be thrown when a JMS

client attempts to write to a read-only message.

• ResourceAllocationException: This exception is thrown when a provider is

unable to allocate the resources required by a method. For example, this

exception should be thrown when a call to createTopicConnection fails due to

lack of JMS provider resources.

• TransactionInProgressException: This exception is thrown when an operation

is invalid because a transaction is in progress. For instance, attempting to

call Session.commit() when a session is part of a distributed transaction

should throw a TransactionInProgressException.

• TransactionRolledBackException: This exception must be thrown when a call to

Session.commit results in a rollback of the current transaction.
JMS Exceptions—August 27, 2001 81

7

82 Java Message Service—August 27, 2001

JMSApplicationServerFacilities 8
8.1 Overview
This chapter describes JMS facilities for concurrent processing of a

subscription’s messages. It also defines how a JMS provider supplies JTS aware

sessions. These facilities can also be used by expert JMS clients.

These facilities are a special category of JMS. They will only be supported by

the more sophisticated JMS providers.

8.2 Concurrent Processing of a Subscription’s Messages
JMS provides a special facility for creating a MessageConsumer that can

concurrently consume messages.

This facility partitions the work into three roles:

• JMS provider - its role is to deliver the messages.

• Application Server - its role is to create the consumer and manage the

threads used by the concurrent MessageListener objects.

• Application - its role is to define a subscription with a destination and

optionally a message selector and provide a single-threaded MessageListener
class to consume its messages. An application server will construct multiple

objects of this class to concurrently consume messages.
83

8

8.2.1 Session

Sessions provide three methods for use by application servers:

• setMessageListener() and getMessageListener() - a session’s MessageListener
consumes messages that have been assigned to the session by a

ConnectionConsumer, as described in the next few paragraphs.

• run() - causes the messages assigned to its session by a ConnectionConsumer
to be serially processed by the session’s MessageListener. When the listener

returns from processing the last message, run() returns.

An application server would typically be given a MessageListener class that

contained the single-threaded code written by an application programmer to

process messages. It would also be given the destination and message selector

that specified the messages the listener was to consume.

An application server would take care of creating the JMS Connection,

ConnectionConsumer, and Sessions it needs to handle message processing. It

would create as many MessageListener instances as it needed and register each

with its own session.

Since many listeners will need to use the services of its session, the listener is

likely to require that its session be passed to it as a constructor parameter.

8.2.2 ServerSession

A ServerSession is an object implemented by an application server. It is used by

an application server to associate a thread with a JMS session.

A ServerSession implements two methods:

• getSession() - returns the ServerSession’s JMS Session.

• start() - starts the execution of the ServerSession thread and results in the

execution of the associated JMS Session’s run method.

8.2.3 ServerSessionPool

A ServerSessionPool is an object implemented by an application server to

provide a pool of ServerSessions for processing the messages of a

ConnectionConsumer.
84 Java Message Service —August 27, 2001

8

Its only method is getServerSession(). This removes a ServerSession from the pool

and gives it to the caller (which is assumed to be a ConnectionConsumer) to use

for consuming one or more messages.

JMS does not architect how the pool is implemented. It could be a static pool of

ServerSessions or it could use a sophisticated algorithm to dynamically create

ServerSessions as needed.

If the ServerSessionPool is out of ServerSessions, the getServerSession() method

may block. If a ConnectionConsumer is blocked, it cannot deliver new messages

until a ServerSession is eventually returned.

8.2.4 ConnectionConsumer

For application servers, connections provide a special facility for creating a

ConnectionConsumer. The messages it is to consume are specified by a

destination and a message selector. In addition, a ConnectionConsumer must be

given a ServerSessionPool to use for processing its messages. A maxMessages
value is specified to limit the number of messages a ConnectionConsumer may

load at one time into a ServerSession’s Session.

Normally, when traffic is light, a ConnectionConsumer gets a ServerSession from

its pool, loads its Session with a single message, and starts it. As traffic picks

up, messages can back up. If this happens, a ConnectionConsumer can load each

Session with more than one message. This reduces the thread context switches

and minimizes resource use at the expense of some serialization of message

processing.

8.2.5 How a ConnectionConsumer Uses a ServerSession

A ConnectionConsumer implemented by a JMS provider uses a ServerSession to

process one or more messages that have arrived. It does this as follows:

1. It gets a ServerSession from the its ServerSessionPool.

2. It gets the ServerSession’s Session.

3. It loads the Session with one or more messages.

4. It then starts the ServerSession to consume these messages.
JMS Application Server Facilities—August 27, 2001 85

8

A ConnectionConsumer for a QueueConnection will expect to load its messages

into a QueueSession, as one for a TopicConnection would expect to load a

TopicSession.

Note that JMS does not architect how the ConnectionConsumer loads the Session
with messages. Since both the ConnectionConsumer and Session are

implemented by the same JMS provider, they can accomplish the load using a

private mechanism.

8.2.6 How an Application Server Implements a ServerSession

JMS does not architect the implementation of a ServerSession. A typical

implementation is presented here to illustrate the concept:

1. An application server creates a Thread for a ServerSession, registering the Serv-
erSession’s runObject. The implementation of this runObject is private to the ap-

plication server.

2. The ServerSession’s start method calls its Thread’s start method. As with all Java

threads, a call to start initiates execution of the started thread and calls the

thread’s runObject. The caller of ServerSession.start (the ConnectionConsumer)

and the ServerSession runObject are now running in different threads.

3. The runObject will do some housekeeping and then call its Session’s run() meth-

od. On return, the runObject puts its ServerSession back into its ServerSessionPool
and returns. This terminates execution of the ServerSession’s thread, and the cy-

cle starts again.

8.2.7 The Result

JMS has defined a flexible mechanism that partitions the job of concurrent

message consumption into roles that are well-suited to each participant.

The application programmer provides an easy-to-write, single-threaded

implementation of MessageListener.

The JMS provider retains control of its messages until they are delivered to the

MessageListener. This insures it is under direct control of message

acknowledgment.

The application server is in control of setting up the ConnectionConsumer and

managing all the threads used for executing its MessageListeners.
86 Java Message Service —August 27, 2001

8

The following diagram illustrates the relationship between the three roles and

the objects they implement.

Session

ServerSession

ServerSessionPool

Connection
Consumer

Message
Listener

App
Server

JMS
Provider

Destination with
optional message

selector

implements

implements

implements

implements

controls
thread for

Manages a
pool of

gets a
ServerSession

from

App

implementssupplies

delivers
messages

to
is delivered

messages for

delivers
messages

to
JMS Application Server Facilities—August 27, 2001 87

8

The following diagram illustrates the process a ConnectionConsumer uses to

deliver a message to a MessageListener.

ConnectionConsumer

Destination with
optional message

selector

ServerSessionPool

getServerSession

ServerSession
getSession

Session

assign one or more
messages

start

ServerSession

Session

run

Message
Listener

onMessage
88 Java Message Service —August 27, 2001

8

8.3 XAConnectionFactory
Some application servers provide support for grouping resource use into a

distributed transaction. To include JMS transactions in a distributed

transaction, an application server requires a Java Transaction API (JTA) capable

JMS provider. A JMS provider exposes its JTA support using a JMS

XAConnectionFactory, which an application server uses to create XAConnections.

XAConnectionFactory provides the same authentication options as

ConnectionFactory.

XAConnectionFactory objects are JMS administered objects, just like

ConnectionFactory objects. It is expected that application servers will find them

by using JNDI.

8.4 XAConnection
XAConnection extends the capability of Connection by providing the ability to

create XASessions.

8.5 XASession
XASession provides access to what looks like a normal Session object and a

javax.transaction.xa.XAResource object which controls the session’s transaction

context. The functionality of XAResource closely resembles that defined by the

standard X/Open XA Resource interface.

An application server controls the transactional assignment of an XASession by

obtaining its XAResource. It uses the XAResource to assign the session to a

distributed transaction, prepare and commit work on the transaction, and so

on.

An XAResource provides some fairly sophisticated facilities for interleaving

work on multiple transactions, recovering a list of transactions in progress, and

so on. A JTA aware JMS provider must fully implement this functionality. This

could be done by using the services of a database that supports XA, or a JMS

provider may choose to implement this functionality from scratch.

A client of the application server is given the XASession’s Session. Behind the

scenes, the application server controls the transaction management of the

underlying XASession.
JMS Application Server Facilities—August 27, 2001 89

8

It is important to note that a distributed transaction context does not flow with

a message; that is, the receipt of the message cannot be part of the same

transaction that produced the message. This is the fundamental difference

between messaging and synchronized processing. Message producers and

consumers use an alternative approach to reliability that is built upon a JMS

provider’s ability to supply a once-and-only-once message delivery guarantee.

To reiterate, the act of producing and/or consuming messages in a Session can

be transactional. The act of producing and consuming a specific message across

different sessions cannot.

8.6 JMS Application Server Interfaces
Both the PTP and Pub/Sub domains provide their own versions of JTS aware

JMS facilities.

Table 8-1 Relationship of PTP and Pub/Sub Expert Interfaces

JMS Root PTP Interface Pub/Sub Interface

ServerSessionPool

ServerSession

ConnectionConsumer

XAConnectionFactory XAQueueConnectionFactory XATopicConnectionFactory

XAConnection XAQueueConnection XATopicConnection

XASession XAQueueSession XATopicSession
90 Java Message Service —August 27, 2001

JMSSampleCode 9
The following code examples show several ways a client could use the various

JMS API message types with both the Point-to-Point and Publish/Subscribe

messaging, to obtain stock quote information.

Note that no exception handling code is included. This makes it easier to see

what's happening.

Let’s assume that there is a stock quote service that sends out the stock quote

messages. This could be done in many different ways, and as will be shown

below, the construction of these messages is the same for both PTP and

Pub/Sub messaging.

Before we can send and receive messages, the client application needs to do

some initial setup.

9.1 Point-to-Point Setup
Here is an example that shows how to send and receive messages using Point-

to-Point messaging.

9.1.1 Getting a QueueConnectionFactory

Both the message sender and receiver need to get a queue connection factory

and use it to set up both a queue connection and a queue session.
91

9

An administrator typically has created and configured a

QueueConnectionFactory for our use. We typically get it by looking it up using

JNDI.

import javax.naming.*;
import javax.jms.*;

QueueConnectionFactory queueConnectionFactory;

Context messaging = new InitialContext();

queueConnectionFactory = (QueueConnectionFactory)
 messaging.lookup(“QueueConnectionFactory”);

9.1.2 Getting a Message Queue

An administrator has created and configured a queue named “StockQueue” for

our use. Again, we use JNDI to look it up.

Queue stockQueue;

stockQueue = (Queue) messaging.lookup("StockQueue");

9.1.3 Getting a QueueConnection

Having obtained the QueueConnectionFactory, we use it to create a

QueueConnection.

QueueConnection queueConnection;

queueConnection = queueConnectionFactory.createQueueConnection();

9.1.4 Getting a QueueSession

Having obtained the QueueConnection, we use it to create a QueueSession. This

will be used to create a QueueSender (if we want to send messages) or a

QueueReceiver (if we want to receive messages).

We use the QueueConnection.createQueueSession method to do this, supplying

two parameters:

• A boolean indicating whether this queue session will be transacted or not

• The mode of acknowledging message receipt
92 Java Message Service—August 27, 2001

9

QueueSession session;

session = queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

9.1.5 Getting a QueueSender

Having obtained the QueueSession, we use it to create a QueueSender, if we are

going to be sending messages to the queue. This is achieved with the

QueueSession.createSender method. We supply one parameter, the queue we are

going to be sending messages to.

QueueSender sender;

sender = session.createSender(stockQueue);

9.1.6 Getting a QueueReceiver

In a similar fashion, we get a QueueReceiver if we are going to be receiving

messages from the queue. This is achieved with the

QueueSession.createReceiver method. We supply one parameter; the queue we

are going to be receiving messages from.

QueueReceiver receiver;

receiver = session.createReceiver(stockQueue);

9.1.7 Start Delivery of Messages

Up until this point, delivery of messages has been inhibited so that the

preceding setup could be done without being interrupted with asynchronously

delivered messages. Now that the setup is complete, the connection is told to

begin the delivery of messages to its message consumers.

queueConnection.start();

9.2 Publish/Subscribe Messaging Domain Setup
Here is an equivalent example that shows how to send and receive messages

using Pub/Sub messaging.
JMS Sample Code—August 27, 2001 93

9

9.2.1 Getting a TopicConnectionFactory

Both the message publisher and subscriber need to get a topic connection

factory and use it to set up a connection and a topic session.

An administrator typically has created and configured a TopicConnectionFactory
for our use. We typically get it by looking it up using JNDI.

TopicConnectionFactory topicConnectionFactory;

Context messaging = new InitialContext();

topicConnectionFactory = (TopicConnectionFactory)
 messaging.lookup("TopicConnectionFactory");

9.2.2 Getting a Message Topic

An administrator has created and configured a topic named “StockTopic” for

our use. Again, we use JNDI to look it up.

Topic stockTopic;

stockTopic = (Topic) messaging.lookup("StockTopic");

9.2.3 Getting a TopicConnection

Having obtained the TopicConnectionFactory, we use it to create a

TopicConnection.

TopicConnection topicConnection;

topicConnection = topicConnectionFactory.createTopicConnection();

9.2.4 Getting a TopicSession

Having obtained the TopicConnection, we use it to create a TopicSession. This will

be used to create a TopicPublisher (if we want to publish messages) or a

TopicSubscriber (if we want to receive messages).
94 Java Message Service—August 27, 2001

9

We use the TopicConnection.createTopicSession method to do this, supplying two

parameters:

• A boolean indicating whether this topic session will be transacted or not

• The mode of acknowledging message receipt

TopicSession session;

session = topicConnection.createTopicSession(false,
 Session.CLIENT_ACKNOWLEDGE);

9.2.5 Getting a TopicSubscriber

Having obtained the TopicSession, we use it to obtain a TopicSubscriber if we are

going to subscribe to the topic in order to receive messages. This is achieved

with the TopicSession.createSubscriber method. We supply the topic we wish to

subscribe to.

First we create a topic subscriber:

TopicSubscriber subscriber;

subscriber = session.createSubscriber(stockTopic);

In order to asynchronously receive messages as they are delivered to our

subscriber, we need to create a message listener that implements the

MessageListener interface.

Our listener class (let’s call it StockListener.java) would look something like this:

import javax.jms.*;

public class StockListener implements MessageListener {

public void
 onMessage(Message message) {

 // unpack and handle the messages we receive

 }
 }
JMS Sample Code—August 27, 2001 95

9

Next we register this message listener with our subscriber:

StockListener myListener = new StockListener();
subscriber.setMessageListener(myListener);

9.2.6 Getting a TopicPublisher

Having obtained the TopicSession, we use it to create a TopicPublisher if we are

going to be publishing messages to the topic. This is achieved with the

TopicSession.createPublisher method. We supply one parameter, the topic we are

going to be publishing messages to.

TopicPublisher publisher;

publisher = session.createPublisher(stockTopic);

9.2.7 Start Delivery of Messages

Up until this point, delivery of messages has been inhibited so that the

preceding setup could be done without being interrupted with asynchronously

delivered messages. Now that the setup is complete, the connection is told to

begin the delivery of messages to its message consumers.

topicConnection.start();

9.3 JMS Message Types
We now need to put the stock information into one of the JMS message types.

Our queue or topic session has all the methods needed for creating a message

of the type we want.

9.3.1 Using a BytesMessage

The stock quote information could be in a binary format that the server knows

how to construct, and the client knows how to interpret and display as a stock

quote.

Such a message could be constructed with:

byte[] stockData; // stock information as a byte array
BytesMessage message;
96 Java Message Service—August 27, 2001

9

message = session.createByteMessage();
message.writeBytes(stockData);

9.3.2 Using a TextMessage

The stock quote information could be sent as a human-readable text string that

is read and displayed by the client.

We can create such a message with:

String stockData; // stock information as a String
TextMessage message;

message = session.createTextMessage();
message.setText(stockData);

9.3.3 Using a MapMessage

Each stock message sent by the server could be a map of various stock quote

name/value pairs. For example, it could contain entries for:

• Stock quote name - String

• Current value - double

• Time of quote - long

• Last change - double

• Stock information - String

The client would receive the whole map message, but might be interested in

displaying only part of this information. It could extract the required fields

from the message, ignoring the rest.

Construction of a stock MapMessage would be something like:

String stockName; // the name of the stock quote
double stockValue; // the current value of the stock
long stockTime; // the time of the stock quote
double stockDiff; // the +/- change in the stock quote
String stockInfo; // information on this stock
MapMessage message;

message = session.createMapMessage();
JMS Sample Code—August 27, 2001 97

9

Note that the following can be set in any order.

message.setString("Name", stockName);
message.setDouble("Value", stockValue);
message.setLong("Time", stockTime);
message.setDouble("Diff", stockDiff);
message.setString("Info", stockInfo);

9.3.4 Using a StreamMessage

In a similar fashion to the map message, the server could send out a message

consisting of various fields written in sequence to the message, each in their

own primitive type:

• Stock quote name - String

• Current value - double

• Time of quote - long

• Last change - double

• Stock information - String

The client might be interested in only some of the message fields, but in the

case of a stream message, it has to read (and potentially throw away) each field

in turn.

The stock StreamMessage could be created with:

String stockName; // the name of the stock quote
double stockValue; // the current value of the stock
long stockTime; // the time of the stock quote
double stockDiff; // the +/- change in the stock quote
String stockInfo; // information on this stock
StreamMessage message;

message = session.createStreamMessage();

Note that the following have to be written in the order they will be read:

message.writeString(stockName);
message.writeDouble(stockValue);
message.writeLong(stockTime);
message.writeDouble(stockDiff);
message.writeString(stockInfo);
98 Java Message Service—August 27, 2001

9

9.3.5 Using an ObjectMessage

The stock information could be sent in the form of a special Stock Java object,

which the client extracts, then uses its methods to obtain the stock information

it requires.

Construction of such an object message could look like this:

String stockName; // the name of the stock quote
double stockValue; // the current value of the stock
long stockTime; // the time of the stock quote
double stockDiff; // the +/- change in the stock quote
String stockInfo; // information on this stock
StockObject stockObject = new StockObject();
ObjectMessage message;

These values could have been passed in when the stock object was constructed.

stockObject.setName(stockName);
stockObject.setValue(stockValue);
stockObject.setTime(stockTime);
stockObject.setDiff(stockDiff);
stockObject.setInfo(stockInfo);

message = session.createObjectMessage();
message.setObject(stockObject);

9.4 Point-to-Point Sending and Receiving
Here's how to send and receive messages in the Point-To-Point messaging

domain.

9.4.1 Sending a Message

Sending of all of these message types is done in the same way:

sender.send(message);
JMS Sample Code—August 27, 2001 99

9

9.4.2 Receiving a Message

Receiving of all of these message types is done in the same way. Here is how to

receive the next message in the queue. Note that this call will block indefinitely

until a message arrives on the queue.

StreamMessage stockMessage;
stockMessage = (StreamMessage)receiver.receive();

9.5 Publish/Subscribe Sending and Receiving
Here's how to send and receive messages in the Publish/Subscribe messaging

domain.

9.5.1 Sending a Message

Sending (publishing) of all of these message types is done in the same way:

publisher.publish(message);

9.5.2 Receiving a Message

Receiving of all of these message types is done in the same way. When the

client subscribed to the topic, it registered a message listener. This listener

will be asynchronously notified whenever a message has been published to the

topic. This is done via the onMessage method in that listener class. It is up to

the client to process the message there.

public void
onMessage(Message message) {

// unpack and handle the messages we receive.

}

9.6 Unpacking messages
Unpacking of a message is different for each message type, but works the same

way in both the Point-To-Point and the Publish/Subscribe messaging domains.
100 Java Message Service—August 27, 2001

9

9.6.1 Unpacking a BytesMessage

byte[] stockData; // stock information as a byte array
int length;

length = message.readBytes(stockData);

9.6.2 Unpacking a TextMessage

String stockData; // stock information as a String

stockData = message.getText();

9.6.3 Unpacking a MapMessage

Note that the following can be obtained in any order.

String stockName; // the name of the stock quote
double stockValue; // the current value of the stock
long stockTime; // the time of the stock quote
double stockDiff; // the +/- change in the stock quote
String stockInfo; // information on this stock

stockName = message.getString("Name");
stockValue = message.getDouble("Value");
stockTime = message.getLong("Time");
stockDiff = message.getDouble("Diff");
stockInfo = message.getString("Info");

9.6.4 Unpacking a StreamMessage

Note that the following have to be read in the order they were written.

String stockName; // the name of the stock quote
double stockValue; // the current value of the stock
long stockTime; // the time of the stock quote
double stockDiff; // the +/- change in the stock quote
String stockInfo; // information on this stock

stockName = message.readString();
stockValue = message.readDouble();
stockTime = message.readLong();
JMS Sample Code—August 27, 2001 101

9

stockDiff = message.readDouble();
stockInfo = message.readString();

9.6.5 Unpacking an ObjectMessage

String stockName; // the name of the stock quote
double stockValue; // the current value of the stock
long stockTime; // the time of the stock quote
double stockDiff; // the +/- change in the stock quote
String stockInfo; // information on this stock
StockObject stockObject;

stockObject = (StockObject)message.getObject();
stockName = stockObject.getName();
stockValue = stockObject.getValue();
stockTime = stockObject.getTime();
stockDiff = stockObject.getDiff();
stockInfo = stockObject.getInfo();

9.7 Message Selection
We might be interested in only certain stock quotes. We can create a message

selector to achieve this. For this example, we will assume that we only want to

receive stock quotes for Sun MicroSystems (SUNW) and IBM (IBM), and that

the stock name has been set in a property called name.

Our message selector String would look like this:

String selector;

selector = new String("(name = ’SUNW’) OR (name = ’IBM’)");

9.7.1 Point-To-Point QueueReceiver Setup

When we create our QueueReceiver, we pass in the message selector string:

QueueReceiver receiver;

receiver = session.createReceiver(queue, selector);

Now we will receive only the stock quotes we are interested in.
102 Java Message Service—August 27, 2001

9

9.7.2 Publish/Subscribe TopicSubscriber Setup

When we create our TopicSubscriber, we pass in the message selector string:

TopicSubscriber subscriber;

subscriber = session.createSubscriber(topic, selector);

Now we will receive only the stock quotes we are interested in.
JMS Sample Code—August 27, 2001 103

9

104 Java Message Service—August 27, 2001

Issues 10
10.1 Resolved Issues

10.1.1 JDK 1.1.x Compatibility

JMS is compatible with JDK 1.1.x.

10.1.2 Distributed Java Event Model

JMS can be used, in general, as a notification service; however, it does not

define a distributed version of Java Events.

One alternative for implementing distributed Java Events would be as

JavaBeans that transparently, to the event producer and listener beans,

distribute the events via JMS.

10.1.3 Should the Two JMS Domains, PTP and Pub/Sub, be merged?

Even though there are many similarities, providing separate domains still

seems to be important.

It means that vendors aren't forced to support facilities out of their domain,

and that client code can be a bit more portable because products more fully

support a domain (as opposed to supporting less defined subsets of a merged

domain).
105

10
10.1.4 Should JMS Specify a Set of JMS JavaBeans?

JMS is a low-level API, and like other Java low-level APIs, it doesn't lend itself

to direct representation as JavaBeans.

10.1.5 Alignment with the CORBA Notification Service

The Notification service adds filtering, delivery guarantee semantics, durable

connections, and the assembly of event networks to the CORBA Event Service.

It gets its delivery guarantee semantics from the CORBA Messaging Service

(which defines asynchronous CORBA method invocation).

Java technology is well integrated with CORBA. It provides Java IDL and COS

Naming. In addition, OMG has recently defined RMI over IIOP.

It is expected that most use of IIOP from Java will be via RMI. It is expected

that most use of COS Naming from Java will be via JNDI (Java Naming and

Directory Service). JMS is a Java API designed to be layered over a wide range

of existing and future MOM systems (just as JNDI is layered over existing

name and directory services).

10.1.6 Should JMS Provide End-to-end Synchronous Message Delivery and
Notification of Delivery?

Some messaging systems provide synchronous delivery to destinations as a

mechanism for implementing reliable applications. Some systems provide

clients with various forms of delivery notification so that the clients can detect

dropped or ignored messages. This is not the model defined by JMS.

JMS messaging provides guaranteed delivery via the once-and-only-once

delivery semantics of PERSISTENT messages. In addition, message consumers

can insure reliable processing of messages by using either

CLIENT_ACKNOWLEDGE mode or transacted sessions.

This achieves reliable delivery with minimum synchronization and is the

enterprise messaging model most vendors and developers prefer.

JMS does not define a schema of systems messages (such as delivery

notifications). If an application requires acknowledgment of message receipt, it

can define an application-level acknowledgment message.
106 Java Message Service—August 27, 2001

10
These issues are more clearly understood when they are examined in the

context of Pub/Sub applications. In this context, synchronous delivery and/or

system acknowledgment of receipt are not an effective mechanism for

implementing reliable applications (because producers by definition are not,

and don’t want to be, responsible for end-to-end message delivery).

10.1.7 Should JMS Provide a Send-to-List Mechanism?

Currently JMS provides a number of message send options; however, messages

can only be sent to one Destination at a time.

The benefit of send-to-list is slightly less work for the programmer and the

potential for the JMS provider to optimize the fact that several destinations are

being sent the same message.

The down side of a send-to-list mechanism is that the list is, in effect, a group

that is implemented and maintained by the client. This would complicate the

administration of JMS clients.

Instead of JMS providing a send-to-list mechanism, it is recommended that

providers support configuring destinations that represent a group. This allows

a client to reach all consumers with a single send, while insuring that groups

are properly administrable.

10.1.8 Should JMS Provide Subscription Notification?

If it were possible for a publisher to detect when subscribers for a topic existed,

it could inhibit publication on unsubscribed topics.

Although there may be some benefit in providing publishers with a

mechanism for inhibiting publication to unsubscribed topics, the complexity

this would add to JMS and the additional provider overhead it would require

are not justified by its potential benefits. Instead, JMS providers should insure

that they minimize the overhead for handling messages published to an

unsubscribed topic.
Issues—August 27, 2001 107

10
108 Java Message Service—August 27, 2001

ChangeHistory 11
11.1 Version 1.0.1

11.1.1 JMS Exceptions

A new JMS Exception chapter was added and it contains the following new

information:

• Two fields were added to JMSException - a vendor error code and an

Exception reference.

• In version 1.0, JMSException was the only JMS exception specified. Version

1.0.1 adds a list of standard exceptions derived from JMSException and

describes when each should be thrown by JMS providers.

11.2 Version 1.0.2
The objective of JMS 1.0.2 is to correct errata in the JMS 1.0.1 specification and

code that have been uncovered by implementors and users. It also contains

many clarifications that resolve ambiguities found in the previous versions.

11.2.1 The Multiple Topic Subscriber Special Case

JMS 1.0.1 specified that in the special case of two topic subscribers on a session

with overlapping subscriptions, a message that was selected by both would

only be delivered to one. Implementation experience revealed that this case
109

11
was better handled in the same way that overlapping subscriptions from

different sessions are treated, so this special case has been removed.

11.2.2 Message Selector Comparison of Exact and Inexact Numeric Values

JMS 1.0.1 specified that message selectors did not support the comparison of

exact and inexact numeric values. This conflicted with the requirement to

support numeric promotion. This has been changed to support exact and

inexact comparison.

11.2.3 Connection and Session Close

JMS 1.0.1 did not fully specify the sequence for closing a connection and its

sessions. This sequence is now fully specified.

JMS 1.0.1 was ambiguous about whether or not calls to connection and session

close returned immediately. Connection and session close now explicitly state

that they block until message processing has been shut down in an orderly

fashion.

11.2.4 Creating a Session on an Active Connection

When a session is created on an active (as opposed to stopped) connection it is

only possible to create at most a single asynchronous consumer for it. A more

detail discussion of this case is provided.

11.2.5 Delivery Mode and Message Retention

The effect that delivery mode has on message retention for a consumer has

been clarified.

11.2.6 The ‘single thread’ Use of Sessions

Sessions are designed to minimize the need to write for multithreaded code in

order to support the asynchronous consumption of messages. Clarification on

the benefits and the programming model of this design have been added.
110 Java Message Service—August 27, 2001

11
11.2.7 Clearing a Message’s Properties and Body

A clarification has been added that notes that clearing a message’s properties

and clearing its body are independent.

11.2.8 Message Selector Numeric Literal Syntax

A note has been added that states that the numeric literal syntax is that

specified by the Java language.

11.2.9 Comparison of Boolean Values in Message Selectors

A note has been added that only equality and inequality comparisons are

supported.

11.2.10 Order of Messages Read from a Queue

A note has been added that explains that a client can read messages from a

destination in an order different from the order they have been sent by using a

selector that matches a later message and then using a selector that matches an

earlier message.

11.2.11 Null Values in Messages

A note has been added that message values are allowed to be null.

11.2.12 Closing Constituents of Closed Connections and Sessions

There was some ambiguity about whether or not close needed to be called on

all JMS objects. A note has been added that states that there is no need to close

the sessions of a closed connection; and, there is no need to close the producers

and consumers of a closed session.

11.2.13 The Termination of a Pending Receive on Close

JMS 1.0.1 did not describe how a pending message receive is terminated if its

session or connection is closed. It is now specified that in this case receive

returns a null message.
Change History—August 27, 2001 111

11
11.2.14 Incorrect Entry in Stream and Map Message Conversion Table

This table erroneously included a required conversion between char and

String. This has been removed.

11.2.15 Inactive Durable Subscription

A note explaining that an inactive durable subscription is one that exists but

does not at the time have a TopicSubscriber created for it.

11.2.16 Read-Only Message Body

The read-only semantics of received message bodies was documented in the

Message javadoc but was not included in the spec. It has been added.

11.2.17 Changing Header Fields of a Received Message

When a message is received, its header field values may be changed; however,

its property entries and its body are read-only. A note clarifying this has been

added.

11.2.18 Null/Missing Message Properties and Message Fields

The result of accessing a null/missing value as a Java primitive type was

previously not fully specified. This has clarified.

11.2.19 JMS Source Errata

Two methods required by the spec were left out of the source, the

getJMSXPropertyNames method of ConnectionMetaData and the

getExceptionListener method of Connection. These have been added.

The type of the time-to-live parameter of setTimeToLive and getTimeToLive

methods of MessageProducer and the type of the default time-to-live constant

were int and have been changed to long.

The close sequence of TopicRequestor and QueueRequestor did not agree with

the order specified in the specification and this has been corrected.
112 Java Message Service—August 27, 2001

11
The type of the parameter of the createTextMessage method that takes an input

value was changed from StringBuffer to String.

The subscription name parameter was missing from the

createDurableSubscription method of TopicConnection. It has been added.

11.2.20 JMS Source JavaDoc Errata

The correct end-of-message indicator for the readBytes method of

BytesMessage is a return value of -1.

The setPriority method of MessageProducer should have a parameter named

‘priority’ not ‘deliveryMode’.

11.2.21 JMS Source JavaDoc Clarifications

Note that byte values are returned as byte[] not Byte[] by the readObject method

of StreamMessage and the getObject method of MapMessage.

Note that the acknowledge method of Message acknowledges all messages

received on that message’s session.

Note that the InvalidClientIDException is used for any client id value that a JMS

provider considers invalid. Since client id value is JMS provider specific the

criteria for determining a valid value is provider specific.

A note has been added to the readBytes method of StreamMessage and

BytesMessage to describe how values that overflow the size of the input buffer

are handled.

A note has been added that clarifies when setClientID method of Connection

should be used.

Note that calling the setMessageListener method of MessageConsumer with a null

value is equivalent to unsetting the MessageListener.

Note that the unsubscribe method of TopicSession should not be called to delete

a durable subscription if there is a TopicConsumer currently consuming it.

Note that result of calling the setMessageListener method of MessageConsumer
while messages are being consumed by an existing listener or the consumer is

being used to synchronously consume messages is undefined.
Change History—August 27, 2001 113

11
Note the createTopic method of TopicSession and the createQueue method of

QueueSession are used for converting a JMS provider specific name into a Topic
or Queue object that represents an existing topic or queue by that name. These

methods are not for creating the physical topic or queue. The physical creation

of topics and queues are administrative tasks and are not done by JMS. The

one exception is the creation of temporary topics and queues which is done

using the createTemporaryTopic and createTemporaryQueue methods.

Note that the setObject method of ObjectMessage places a copy of the input

object in a message.

Note that a connection is created in stopped mode and, for incoming messages

to be delivered to the message listeners of its sessions, its start method must be

called.

Documentation of Message default constants has been added.

Note the result of readBytes method of StreamMessage when the callers byte[]
buffer is smaller than the byte[] field value being read.

The documentation of QueueRequestor and TopicRequestor has been improved.

The IllegalStateException has been noted as a required exception for several

more error conditions. they are acknowledging a message received from a

closed session; attempting to call the recover method of a transacted session;

attempting to call any method of a closed connection, session, consumer or

producer (with the exception of the close method itself); attempting to set a

connection’s client identifier at the wrong time or when it has been

administratively configured.

11.3 Version 1.0.2b
The objective of version 1.0.2b of the JMS API Specification and Javadoc is to

correct errata in the JMS 1.02 Specification and the JMS 1.0.2a Javadoc that

have been uncovered by implementors and users.

Version 1.0.2b incorporates two sets of errata, which are marked by change

bars in the Specification:

• Major errata and clarifications approved by a Java Community ProcessSM

program Maintenance Review that closed June 25, 2001.

• Minor errata formerly listed on the JMS documentation web page.
114 Java Message Service—August 27, 2001

11
11.3.1 JMS API Specification, version 1.0.2: Errata and Clarifications

The following errata and clarifications have been incorporated into the

Specification. They are listed in the order in which they occur in the

Specification.

• Section 3.4.7, “JMSRedelivered”: Change first paragraph to clarify when a

provider must set this header field.

• Section 3.5.9, “JMS Defined Properties”: Correct return value of

ConnectionMetaData.getJMSXPropertyNames method.

• Section 3.8.1.1, “Message Selector Syntax”: After the first sentence, add

sentence about the interpretation of a message selector whose value is an

empty string. In the third sub-bullet item under “Identifiers,” add ESCAPE

to the list of prohibited identifiers. In the fourth sub-bullet item, add

sentence about data types of property values, and move description of the

value of nonexistent properties referenced in a selector from last bullet item

to here. Add sub-bullet item clarifying that data type conversions do not

apply to properties used in message selectors. In the first sub-bullet item

under “Comparison Operators,” clarify the result of comparing non-like

type values. At end of section, correct quotation marks in example.

• Section 3.10, “Changing the Value of a Received Message”: Add paragraph

clarifying the semantics of redelivering a message that was modified after

being received.

• Section 3.12, “Provider Implementations of JMS Message Interfaces”: Insert

paragraph clarifying the handling of destinations for foreign message

implementations.

• Section 4.4.12, “Duplicate Delivery of Messages” (formerly misnumbered

4.4.14): Add sentence about JMSRedelivered message header field.

• Section 4.5.2, “Asynchronous Delivery”: Clarify explanation of redelivery

for AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE

acknowledgment modes.

• Section 4.10, “Reliability”: Clarify meaning of PERSISTENT and

NON_PERSISTENT delivery modes throughout section.

• Section 6.9, “TopicSession”: Clarify redelivery of messages for durable and

nondurable subscriptions.

Rationale for this change: The scope of redelivery is the lifetime of a

destination, not of the session that is consuming it. Each nondurable

subscription is a different destination, and its lifetime is the session that
Change History—August 27, 2001 115

11
creates it. Each temporary queue or topic is a different destination whose

lifetime is the connection that creates it.

• Section 6.12, “Recovery and Redelivery”: Clarify recoverability of messages

for nondurable subscriptions.

Rationale for this change: Update the Specification to meet the expectation

that a nondurable subscriber performs the same as a durable subscriber as

long as the nondurable subscriber is in existence. The original statement in

the specification could be interpreted to mean that message recovery was

optional for a nondurable subscriber. It would be valuable to have a lower

quality of service that did not require acknowledgement overhead, but a

new mechanism should be provided to specify the lower quality of service

option; the minimum quality of service required by the current specification

should not be lowered.

• Section 7.3, “Standard Exceptions”: In description of IllegalStateException,

change “should” to “must”. In description of MessageFormatException,

correct method names, and change “should” to “must” in last sentence.

11.3.2 JMS API Javadoc, version 1.0.2a: Major Errata

The following items represent significant clarifications of the JMS API Javadoc,

version 1.0.2a. They are categorized as follows:

• Corrections of mistakes

• Reconciliations between the Specification and the Javadoc

Less important clarifications to the Javadoc are listed in Section 11.3.3, “JMS

API Javadoc, version 1.0.2a: Lesser Errata”.

11.3.2.1 Corrections of Mistakes

In the following cases, the Javadoc was in error and has been corrected:

• BytesMessage and StreamMessage interfaces: Correct discussion of

modification of sent messages.

• TemporaryQueue.delete and TemporaryTopic.delete methods: Remove references

to senders and publishers.
116 Java Message Service—August 27, 2001

11
11.3.2.2 Reconciliations between the Specification and the Javadoc

The following items update the Javadoc to match the correct language in the

Specification:

• Message interface: Correct description of getting values for unset property

names to match Section 3.5.4, “Property Value Conversion.” Remove

incorrect bullet items about NULL values in arithmetic operations and

BETWEEN operations.

• Message.acknowledge method: Clarify that the method applies to all

consumed messages of the session.

Rationale for this change: A possible misinterpretation of the existing

Javadoc for Message.acknowledge assumed that only messages received prior

to “this” message should be acknowledged. The updated Javadoc statement

emphasizes that message acknowledgement is really a session-level activity

and that this message is only being used to identify the session in order to

acknowledge all messages consumed by the session. The acknowledge
method was placed in the message object only to enable easy access to

acknowledgement capability within a message listener’s onMessage method.

This change aligns the specification and Javadoc to define

Message.acknowledge in the same manner.

• Message.getJMSTimestamp and MessageProducer.setDisableMessageTimestamp
methods: Correct descriptions of effect of disabling timestamps.

• TopicSession.createSubscriber and TopicSession.createDurableSubscriber methods:

Correct Throws: lists.

11.3.3 JMS API Javadoc, version 1.0.2a: Lesser Errata

The Javadoc corrections listed in this section concern the application of logic

from the Specification or elsewhere in the Javadoc:

• Corrections to the Specification listed in Section 11.3.1, “JMS API

Specification, version 1.0.2: Errata and Clarifications”

• Information in the Specification not previously reflected in the Javadoc

• Information provided in some parts of the Javadoc, but not in others where

it also belongs

1. Message interface: Add the corrections to Section 3.8.1.1, “Message Selector Syn-

tax,” to the section on message selectors.
Change History—August 27, 2001 117

11
Also change the Javadoc for the following methods to reflect these changes:

 QueueConnection.createConnectionConsumer
 QueueSession.createReceiver
 QueueSession.createBrowser
 TopicConnection.createConnectionConsumer
 TopicConnection.createDurableConnectionConsumer
 TopicSession.createSubscriber
 TopicSession.createDurableSubscriber
 QueueBrowser.getMessageSelector
 MessageConsumer.getMessageSelector

2. Correct the Javadoc for the following methods to add InvalidDestinationExcep-
tion to the Throws: list, in accordance with Section 7.3, “Standard Exceptions”:

 QueueConnection.createConnectionConsumer
 QueueRequestor.QueueRequestor
 TopicConnection.createConnectionConsumer
 TopicConnection.createDurableConnectionConsumer
 TopicRequestor.TopicRequestor

3. TopicSession.createDurableSubscriber method: Change the description of the two-

argument form to accord with the description of the one-argument form of the

TopicSession.createSubscriber method.

4. QueueSender and TopicPublisher interfaces: Add clarifications from Section 3.9,

“Access to Sent Messages,” and Section 3.4.11, “How Message Header Values

Are Set.” Add UnsupportedOperationException to send and publish method

Throws: lists where relevant.

5. QueueReceiver interface: Add language from Section 5.8, “QueueReceiver.”

6. IllegalStateException and MessageFormatException classes: Add corrections from

Section 7.3, “Standard Exceptions.”
118 Java Message Service—August 27, 2001

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
650 960-1300

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 650 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
650 960-1300
Intercontinental Sales: 650 688-9000

	Java Message Service
	Introduction
	1.1 Abstract
	1.2 Overview
	1.2.1 Is This a Mail API?
	1.2.2 Existing Messaging Systems
	1.2.3 JMS Objectives
	1.2.3.1 JMS Provider
	1.2.3.2 JMS Messages
	1.2.3.3 JMS Domains
	1.2.3.4 Portability

	1.2.4 What JMS Does Not Include

	1.3 What Is Required by JMS
	1.4 Relationship to Other JavaSoft Enterprise APIs
	1.4.1 Java DataBase Connectivity (JDBCTM)
	1.4.2 JavaBeansTM Components
	1.4.3 Enterprise JavaBeansTM Components
	1.4.4 Java Transaction API (JTA)
	1.4.5 Java Transaction Service (JTS)
	1.4.6 Java Naming and Directory InterfaceTM (JNDI)

	Architecture
	2.1 Overview
	2.2 What is a JMS Application?
	2.3 Administration
	2.4 Two Messaging Styles
	2.5 JMS Interfaces
	2.6 Developing a JMS Application
	2.6.1 Developing a JMS Client

	2.7 Security
	2.8 Multithreading
	2.9 Triggering Clients
	2.10 Request/Reply

	JMS Message Model
	3.1 Background
	3.2 Goals
	3.3 JMS Messages
	3.4 Message Header Fields
	3.4.1 JMSDestination
	3.4.2 JMSDeliveryMode
	3.4.3 JMSMessageID
	3.4.4 JMSTimestamp
	3.4.5 JMSCorrelationID
	3.4.6 JMSReplyTo
	3.4.7 JMSRedelivered
	3.4.8 JMSType
	3.4.9 JMSExpiration
	3.4.10 JMSPriority
	3.4.11 How Message Header Values Are Set
	3.4.12 Overriding Message Header Fields

	3.5 Message Properties
	3.5.1 Property Names
	3.5.2 Property Values
	3.5.3 Using Properties
	3.5.4 Property Value Conversion
	3.5.5 Property Values as Objects
	3.5.6 Property Iteration
	3.5.7 Clearing a Message’s Property Values
	3.5.8 Nonexistent Properties
	3.5.9 JMS Defined Properties
	3.5.10 Provider-Specific Properties

	3.6 Message Acknowledgment
	3.7 The Message Interface
	3.8 Message Selection
	3.8.1 Message Selector
	3.8.1.1 Message Selector Syntax
	3.8.1.2 Null Values
	3.8.1.3 Special Notes

	3.9 Access to Sent Messages
	3.10 Changing the Value of a Received Message
	3.11 JMS Message Body
	3.11.1 Clearing a Message Body
	3.11.2 Read-Only Message Body
	3.11.3 Conversions Provided by StreamMessage and MapMessage
	3.11.4 Messages for Non-JMS Clients

	3.12 Provider Implementations of JMS Message Interfaces

	JMS Common Facilities
	4.1 Overview
	4.2 Administered Objects
	4.2.1 Destination
	4.2.2 ConnectionFactory

	4.3 Connection
	4.3.1 Authentication
	4.3.2 Client Identifier
	4.3.3 Connection Setup
	4.3.4 Pausing Delivery of Incoming Messages
	4.3.5 Closing a Connection
	4.3.6 Sessions
	4.3.7 ConnectionMetaData
	4.3.8 ExceptionListener

	4.4 Session
	4.4.1 Closing a Session
	4.4.2 MessageProducer and MessageConsumer Creation
	4.4.3 Creating Temporary Destinations
	4.4.4 Creating Destinations
	4.4.5 Optimized Message Implementations
	4.4.6 Conventions for Using a Session
	4.4.7 Transactions
	4.4.8 Distributed Transactions
	4.4.9 Multiple Sessions
	4.4.10 Message Order
	4.4.10.1 Order of Message Receipt
	4.4.10.2 Order of Message Sends

	4.4.11 Message Acknowledgment
	4.4.12 Duplicate Delivery of Messages
	4.4.13 Duplicate Production of Messages
	4.4.14 Serial Execution of Client Code
	4.4.15 Concurrent Message Delivery

	4.5 MessageConsumer
	4.5.1 Synchronous Delivery
	4.5.2 Asynchronous Delivery

	4.6 MessageProducer
	4.7 Message Delivery Mode
	4.8 Message Time-To-Live
	4.9 Exceptions
	4.10 Reliability

	JMS Point-to-Point Model
	5.1 Overview
	5.2 Queue Management
	5.3 Queue
	5.4 TemporaryQueue
	5.5 QueueConnectionFactory
	5.6 QueueConnection
	5.7 QueueSession
	5.8 QueueReceiver
	5.9 QueueSender
	5.10 QueueBrowser
	5.11 QueueRequestor
	5.12 Reliability

	JMS Publish/Subscribe Model
	6.1 Overview
	6.2 Pub/Sub Latency
	6.3 Durable Subscription
	6.4 Topic Management
	6.5 Topic
	6.6 TemporaryTopic
	6.7 TopicConnectionFactory
	6.8 TopicConnection
	6.9 TopicSession
	6.10 TopicPublisher
	6.11 TopicSubscriber
	6.11.1 Durable TopicSubscriber

	6.12 Recovery and Redelivery
	6.13 Administering Subscriptions
	6.14 TopicRequestor
	6.15 Reliability

	JMS Exceptions
	7.1 Overview
	7.2 The JMSException
	7.3 Standard Exceptions

	JMS Application Server Facilities
	8.1 Overview
	8.2 Concurrent Processing of a Subscription’s Messages
	8.2.1 Session
	8.2.2 ServerSession
	8.2.3 ServerSessionPool
	8.2.4 ConnectionConsumer
	8.2.5 How a ConnectionConsumer Uses a ServerSession
	8.2.6 How an Application Server Implements a ServerSession
	8.2.7 The Result

	8.3 XAConnectionFactory
	8.4 XAConnection
	8.5 XASession
	8.6 JMS Application Server Interfaces

	JMS Sample Code
	9.1 Point-to-Point Setup
	9.1.1 Getting a QueueConnectionFactory
	9.1.2 Getting a Message Queue
	9.1.3 Getting a QueueConnection
	9.1.4 Getting a QueueSession
	9.1.5 Getting a QueueSender
	9.1.6 Getting a QueueReceiver
	9.1.7 Start Delivery of Messages

	9.2 Publish/Subscribe Messaging Domain Setup
	9.2.1 Getting a TopicConnectionFactory
	9.2.2 Getting a Message Topic
	9.2.3 Getting a TopicConnection
	9.2.4 Getting a TopicSession
	9.2.5 Getting a TopicSubscriber
	9.2.6 Getting a TopicPublisher
	9.2.7 Start Delivery of Messages

	9.3 JMS Message Types
	9.3.1 Using a BytesMessage
	9.3.2 Using a TextMessage
	9.3.3 Using a MapMessage
	9.3.4 Using a StreamMessage
	9.3.5 Using an ObjectMessage

	9.4 Point-to-Point Sending and Receiving
	9.4.1 Sending a Message
	9.4.2 Receiving a Message

	9.5 Publish/Subscribe Sending and Receiving
	9.5.1 Sending a Message
	9.5.2 Receiving a Message

	9.6 Unpacking messages
	9.6.1 Unpacking a BytesMessage
	9.6.2 Unpacking a TextMessage
	9.6.3 Unpacking a MapMessage
	9.6.4 Unpacking a StreamMessage
	9.6.5 Unpacking an ObjectMessage

	9.7 Message Selection
	9.7.1 Point-To-Point QueueReceiver Setup
	9.7.2 Publish/Subscribe TopicSubscriber Setup

	Issues
	10.1 Resolved Issues
	10.1.1 JDK 1.1.x Compatibility
	10.1.2 Distributed Java Event Model
	10.1.3 Should the Two JMS Domains, PTP and Pub/Sub, be merged?
	10.1.4 Should JMS Specify a Set of JMS JavaBeans?
	10.1.5 Alignment with the CORBA Notification Service
	10.1.6 Should JMS Provide End-to-end Synchronous Message Delivery and Notification of Delivery?
	10.1.7 Should JMS Provide a Send-to-List Mechanism?
	10.1.8 Should JMS Provide Subscription Notification?

	Change History
	11.1 Version 1.0.1
	11.1.1 JMS Exceptions

	11.2 Version 1.0.2
	11.2.1 The Multiple Topic Subscriber Special Case
	11.2.2 Message Selector Comparison of Exact and Inexact Numeric Values
	11.2.3 Connection and Session Close
	11.2.4 Creating a Session on an Active Connection
	11.2.5 Delivery Mode and Message Retention
	11.2.6 The ‘single thread’ Use of Sessions
	11.2.7 Clearing a Message’s Properties and Body
	11.2.8 Message Selector Numeric Literal Syntax
	11.2.9 Comparison of Boolean Values in Message Selectors
	11.2.10 Order of Messages Read from a Queue
	11.2.11 Null Values in Messages
	11.2.12 Closing Constituents of Closed Connections and Sessions
	11.2.13 The Termination of a Pending Receive on Close
	11.2.14 Incorrect Entry in Stream and Map Message Conversion Table
	11.2.15 Inactive Durable Subscription
	11.2.16 Read-Only Message Body
	11.2.17 Changing Header Fields of a Received Message
	11.2.18 Null/Missing Message Properties and Message Fields
	11.2.19 JMS Source Errata
	11.2.20 JMS Source JavaDoc Errata
	11.2.21 JMS Source JavaDoc Clarifications

	11.3 Version 1.0.2b
	11.3.1 JMS API Specification, version 1.0.2: Errata and Clarifications
	11.3.2 JMS API Javadoc, version 1.0.2a: Major Errata
	11.3.2.1 Corrections of Mistakes
	11.3.2.2 Reconciliations between the Specification and the Javadoc

	11.3.3 JMS API Javadoc, version 1.0.2a: Lesser Errata

