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Abstract—Conservation of information theorems indicate that
any search algorithm performs, on average, as well as random
search without replacement wunless it takes advantage of
problem-specific information about the search target or the
search-space structure. Combinatorics shows that even a mod-
erately sized search requires problem-specific information to be
successful. Computers, despite their speed in performing queries,
are completely inadequate for resolving even moderately sized
search problems without accurate information to guide them. We
propose three measures to characterize the information required
for successful search: 1) endogenous information, which measures
the difficulty of finding a target using random search; 2) ex-
ogenous information, which measures the difficulty that remains
in finding a target once a search takes advantage of problem-
specific information; and 3) active information, which, as the differ-
ence between endogenous and exogenous information, measures
the contribution of problem-specific information for successfully
finding a target. This paper develops a methodology based on
these information measures to gauge the effectiveness with which
problem-specific information facilitates successful search. It then
applies this methodology to various search tools widely used in
evolutionary search.

Index Terms—Active information, asymptotic equipartition
property, Brillouin active information, conservation of informa-
tion (COI), endogenous information, evolutionary search, genetic
algorithms, Kullback-Leibler distance, no free lunch theorem
(NFLT), partitioned search.

I. INFORMATION AS A COST OF SEARCH

VER 50 years ago, Leon Brillouin, a pioneer in informa-
tion theory, wrote “The [computing] machine does not
create any new information, but it performs a very valuable
transformation of known information” [5]. When Brillouin’s
insight is applied to search algorithms that do not employ
specific information about the problem being addressed, one
finds that no search performs consistently better than any other.
Accordingly, there is no “magic-bullet” search algorithm that
successfully resolves all problems [10], [44].
In the last decade, Brillouin’s insight has been analytically
formalized under various names and in various ways in re-
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gard to computer-optimization search and machine-learning
algorithms.

1) Schaffer’s Law of Conservation of Generalization Per-
formance [39] states “a learner ... that achieves at least
mildly better-than-chance performance [without specific
information about the problem in question]. .. is like a
perpetual motion machine.”

2) The no free lunch theorem (NFLT) [46] likewise estab-
lishes the need for specific information about the search
target to improve the chances of a successful search.
“[U]nless you can make prior assumptions about the . ..
[problems] you are working on, then no search strat-
egy, no matter how sophisticated, can be expected to
perform better than any other” [23]. Search can be im-
proved only by “incorporating problem-specific knowl-
edge into the behavior of the [optimization or search]
algorithm” [46].

3) English’s Law of Conservation of Information (COI) [15]
notes “the futility of attempting to design a generally
superior optimizer” without problem-specific information
about the search.

When applying Brillouin’s insight to search algorithms (in-
cluding optimization, machine-learning procedures, and evo-
lutionary computing), we use the umbrella-phrase COIL. COI
establishes that one search algorithm will work, on average,
as well as any other when there is no information about the
target of the search or the search space. The significance of COI
has been debated since its popularization through the NFLT. On
the one hand, COI has a leveling effect, rendering the average
performance of all algorithms equivalent. On the other hand,
certain search techniques perform remarkably well, distinguish-
ing themselves from others. There is a tension here, but no
contradiction. For instance, particle-swarm optimization [2],
[14],[16], [22] and genetic algorithms [1], [16], [19], [36]-[38],
[45], [49], [51] perform well on a wide spectrum of problems.
Yet, there is no discrepancy between the successful experience
of practitioners with such versatile search algorithms and the
COl-imposed inability of the search algorithms themselves to
create novel information [7], [13], [15]. Such information does
not magically materialize but instead results from the action
of the programmer who prescribes how knowledge about the
problem gets folded into the search algorithm.

Practitioners in the earlier days of computing sometimes
referred to themselves as “penalty function artists” [21], a
designation that reflects the need for the search practitioner to
inject knowledge about the sought-after solution into the search
procedure. Problem-specific information is almost always
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embedded in search algorithms. Yet, because this information
can be so familiar, we can fail to notice its presence.

COI does not preclude better-than-average performance on
a specific problem class [8], [18], [20], [31], [35], [43]. For
instance, when choosing the best k£ of n features for a clas-
sification problem, hill-climbing approaches are much less ef-
fective than branch-and-bound approaches [25]. Hill-climbing
algorithms require a smooth fitness surface uncharacteristic
of the feature-selection problem. This simple insight when
smooth fitness functions are appropriate constitutes knowledge
about the search solution; moreover, utilizing this knowledge
injects information into the search. Likewise, the ability to
eliminate large regions of the search space in branch-and-bound
algorithms supplies problem-specific information. In these ex-
amples, the information source is obvious. In other instances, it
can be more subtle.

Accuracy of problem-specific information is a fundamental
requirement for increasing the probability of success in a
search. Such information cannot be offered blindly but must
accurately reflect the location of the target or the search-space
structure. For example, to open a locked safe with better-than-
average performance, we must either do the following.

1) Know something about the combination, e.g., knowing all
of the numbers in the combination are odd is an example
of target information.

2) Know something about how the lock works, e.g., listening
to the lock’s tumblers during access is an example of
search-space structure information.

In either case, the information must be accurate. If we are
incorrectly told, for example, that all of the digits to a lock’s
combination are odd when in fact they are all even, and we
therefore only choose odd digits, then the probability of success
nosedives. In that case, we would have been better simply to
perform a random search.

Recognition of the inability of search algorithms in them-
selves to create information is “very useful, particularly in light
of some of the sometimes-outrageous claims that had been
made of specific optimization algorithms” [7]. Indeed, when the
results of an algorithm for even a moderately sized search prob-
lem are “too good to be true” or otherwise “overly impressive,”
we are faced with one of two inescapable alternatives.

1) The search problem under consideration, as gauged by
random search, is not as difficult as it first appears. Just
because a convoluted algorithm resolves a problem does
not mean that the problem itself is difficult. Algorithms
can be like Rube Goldberg devices that resolve simple
problems in complex ways. Thus, the search problem
itself can be relatively simple and, from a random-query
perspective, have a high probability of success.

2) The other inescapable alternative, for difficult problems,
is that problem-specific information has been success-
fully incorporated into the search.

As with many important insights, reflection reveals the ob-
viousness of COI and the need to incorporate problem-specific
information in search algorithms. Yet, despite the widespread
dissemination of COI among search practitioners, there is to
date no general method to apply COI to the analysis and
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design of search algorithms. We propose a method that does
so by measuring the contribution of problem-specific target and
search-space structure information to search problems.

II. MEASURING ACTIVE INFORMATION

If we have a combination lock with five thumb wheels, each
numbered from zero to nine, our chances of opening the lock
in eight tries or less is not dependent on the ordering of the
combinations tried. Using the results of the first two failed
combinations, for example, [0, 1, 2, 3, 4] and [4, 3, 2, 1,
0], tells us nothing about what the third try should be. After
eight tries at the combination lock with no duplicate combi-
nations allowed, no matter how clever the method used, the
chances of choosing the single combination that opens the lock
is p=1-1(99992/100000) = 8.00 x 105 corresponding to
an endogenous information of I = —log,p = 13.6 b. The
endogenous information provides a baseline difficulty for the
problem to be solved. In this example, the problem difficulty is
about the same as sequentially forecasting the results of 14 flips
of a fair coin.

To increase the probability of finding the correct combina-
tion, more information is required. Suppose, for example, we
know that all of the single digits in the combination that opens
the lock are even. There are 5° = 3125 such combinations.
Choosing the single successful combination in eight tries or less
is ¢ =1—(3117/3125) = 2.56 x 1073, or exogenous infor-
mation Is = 8.61 b. The difference, I = I — Ig = 5.00 b,
is the active information and assesses numerically the problem-
specific information incorporated into the search that all the
digits are even.

More formally, let a probability space €2 be partitioned into a
set of acceptable solutions 7" and a set of unacceptable solutions
T. The search problem is to find a point in 7" as expediently as
possible. With no problem-specific information, the distribution
of the space is assumed uniform. This assumption dates to the
18th century and Bernoulli’s principle of insufficient reason
[4], which states that “in the absence of any prior knowl-
edge, we must assume that the events [in 2] ... have equal
probability” [34]. Problem-specific information includes both
target-location information and search-space structure informa-
tion. Uniformity is equivalent to an assumption of maximum
(informational) entropy on the search space. The assumption
of maximum entropy is useful in optimization and is, for
example, foundational in Burg’s maximum entropy method
(6], [9], [34].

The probability of choosing an element from 7" in 2 in a
single query is then

7]
p= M
1]
where |- | denotes the cardinality of a set. On the average,

without use of active information, all queries will have this
same probability of success.

For a single query, the available endogenous informa-
tion is

Ig = —log(p). ()
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Endogenous information is independent of the search algorithm
used to find the target [39], [46]. To increase the probability
of a search success, knowledge concerning the target location
or search-space structure must be prescribed. Let ¢ denote
the probability of success of a query by incorporating into
the search problem-specific information. The difficulty of the
problem has changed and is characterized by the exogenous
information

Is = —log(q). 3

If the problem-specific information incorporated into a
search accurately reflects the target location, the probability of
success of a query will increase. Thus, ¢ > p and the corre-
sponding exogenous information will be smaller than the en-
dogenous information (i.e., I > Ig). The difference between
these two information measures we call the active information.
It is conveniently represented as

p
I ——log(2). 4
+ 0g<q) 4

This definition satisfies important boundary criteria that are
consistent with properties we expect of problem-specific
information.

1) For a perfect search, ¢ = 1, and the active information
is I = Io. The perfect search therefore extracts all
available information from the search space.

2) If there is no improvement, the probability of success
is the same as that of a random query and ¢ = p. The
active information in (4) is appropriately zero, and no
knowledge of the target location or search-space structure
has been successfully incorporated into the search.

3) If the active information degrades performance, then we
can have ¢ < p in which case the active information is
negative.

As with other log-ratio measures, such as decibels, the active
information measure is taken with respect to a reference or
baseline, in this case the chance of success of a single random
query p. Other baselines can be used.

Single queries generalize directly to multiple queries or
samples. Obtaining one or more sixes in four or less rolls of
a die, for example, can be considered a target 7" in a fourfold
Cartesian product of the sample space of a single die. Thus, the
sequence of four queries can be considered as a single query
in this larger search space. References to a single query can
therefore correspond to a number of experiments rather than a
single measurement.

Active information captures numerically the problem-
specific information that assists a search in reaching a target.
We therefore find it convenient to use the term “active informa-
tion” in two equivalent ways:

1) as the specific information about target location and
search-space structure incorporated into a search algo-
rithm that guides a search to a solution;

2) as the numerical measure for this information and defined
as the difference between endogenous and exogenous
information.
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Search often requires numerous queries to achieve success.
If (@ queries are required to extract all of the available en-
dogenous information, then the average active information per

query is

Io

bits per query.
Q

IC‘:

III. EXAMPLES OF ACTIVE INFORMATION IN SEARCH

We next illustrate how active information can be measured
and offer, as examples, the active information for search using
the common tools of evolutionary search in commonly used
search algorithms, including repeated queries, importance sam-
pling, partitioned search, evolution strategy, and use of random
mutation. In each case, the source of active information is
identified and is then measured.

A. Repeated Queries

Multiple queries clearly contain more information than a
single query. Active information is therefore introduced from
repeated queries. Assuming uniformity, the probability of at
least one success in () queries without replacement is

(19 - Q)
Q!

(1€ - [T])!
(192[ =T - Q)

pwozl_

The NFLT states that, without added information, the probabil-
ity of success on the average will be the same no matter what
procedure is used to perform the () queries. The NFLT assumes
sampling without replacement [46]. For p < 1 and Q < |Q],
sampling with and without replacement are nearly identical,
and we can write to a good approximation

Puwo ~ pw =1— (1 —p)<. ®)

For pQQ < 1, we can approximate 1 — (1 — p)? =~ pQ. Then,
for ¢ = pyo in (4), we obtain the interesting result

I} ~ log(Q). (6)

When the stated assumptions apply, the active information
from multiple queries is therefore independent of both the
size of the sample space and the probability of success. The
repeated random queries also provide diminishing returns.
The active information from two queries is 1 b. The active
information from 1024 queries is only 1 b more than that
from 512.

B. Subset Search

A simple example of active information, due to Brillouin
[5], occurs when the target is known to reside in some sub-
set € C Q. In subset search, we know that 7" C ' C Q and
q=|T|/|Y|. Active information is therefore introduced by
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Fig. 1. Importance sampling imposes a probability structure on €2 where more
probability mass is focused around the target 7". The probability of a successful
search increases, and active information is introduced. Without importance
sampling, the distribution over €2 is uniform. Note that the placement of the
distribution about 7" must be accurate. If placed at a different location in €2,

the distribution over 7" can dip below uniform. The active information is then
negative.

restricting the search to a smaller number of possibilities. The
Brillouin active information is

||

i €]

€]

I, = —log

Subset search is a special case of importance sampling.

C. Importance Sampling

The simple idea of importance sampling [42] is to query
more frequently near to the target. As shown in Fig. 1, active
information is introduced by variation of the distribution of the
search space to one where more probability mass is concen-
trated about the target.

Our use of importance sampling is not conventional. The
procedure is typically used to determine expected values us-
ing Monte Carlo simulation using fewer randomly generated
queries by focusing attention on queries closer to the target.
We are interested, rather, in locating a single point in 7". The
probability of doing so is

¢= h@ (8)

reT

where h(Z) denotes the probability mass function with the
outer product image {1 ¢2 g3 qn } L. The active
information follows from substituting (8) into (4).

Example 1: Let the target T be the first of |2 = 8 possible
outcomes. Then, p = 1/8 and I, = 3 b. If importance sampling
is applied so that the probability of choosing the target doubles,
then the resulting active information is I, =1 b. If impor-
tance sampling is inappropriately applied and the probability
of choosing the target is half of p, then the resulting active
information is negative: Iy = —1b.

D. FOO

Frequency-of-occurrence (FOO) search is applicable for
searching for a sequence of L sequential elements using an
alphabet of N characters. With no active information, a char-
acter must be assumed to occur at the same rate as any other
character. Active information can be bettered by querying in
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accordance to the FOO of the characters [5], [41]. The endoge-
nous information using a uniform distribution is

I = Llog, N. )

A priori knowledge that certain characters occur more fre-
quently than others can improve the search probability. In
such cases, the average information per character reduces from
log, N to the average information or entropy

N
Hy == pnlog(pn) (10)
n=1

where p,, is the probability of choosing the nth character. The
active information per character is then'

Iy

N)—H
L )~ Hy

(1)

= logs( bits per character.
If capitalization and punctuation are not used, English has an
alphabet of size N = 27 (26 letters and a space). Some letters,
like E, occur more frequently than others, like Z. Use of FOO
information reduces the entropy from log,(27) = 4.76 b to an
entropy of about Hy = 4.05 b per character [5]. The active
information per character is
I
% = 0.709 b per character for English. (12)
DNA has an alphabet of length N =4 corresponding to
the four nucleotide A, C, G, and T. When equiprobable, each
nucleotide therefore corresponds to 2 b of information per
nucleotide. The human genome has been compressed to a rate
of 1.66 b per nucleotide [27] and corresponds to an active
information per nucleotide of
1
f+ = 0.34 b per nucleotide. (13)
Active FOO information can shrink the search space sig-
nificantly. For L > 1, the asymptotic equipartition property
[9], [41] becomes applicable. In English, for example, if the
probability of choosing an E is 10%, then, as L increases, the
proportion of E’s in the message will, due to the law of large
numbers [33], approach 10% of the elements in the message.

Let ¢,, be the number of elements in a typical message of length
L. Then, for large L, we can approximate ¢,, ~ p,, L and

N
L= Z 0.
n=1

Signals wherein (14) is approximately true are called fypical.
The approximation becomes better as L increases. For a fixed
L, the number of typical signals can be significantly smaller
than |Q], thereby decreasing the portion of the search space
requiring examination.

To see this, let w C {) denote the set of typical sig-
nals corresponding to given FOO probabilities. The added

(14)

I'This expression is recognized as the Kullback—Leibler distance between the
structured search space and the uniform distribution [9].
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FOO information reduces the size of the search space from
Q] = N to?

_ 9LHy

|w] 15)

where Hy is measured in bits. When search is performed using
the FOO, the fractional reduction of size of the search space is
specified by the active information. Specifically

el _
@ NF

2LHN

=271+ (16)

where I, is measured in bits. Equation (16) is consistent
with (7). For English, from (12), the reduction due to
FOO information is |w|/|Q] = (27979)L = (0.612)%, a factor
quickly approaching zero. From (13), the same is true for the
nucleotide sequence for which the effective search-space size
reduces by a proportion of |w|/|Q| = (279349)L = (0.975)%.
In both cases, the effective reduced search space, though, will
still be too large to practically search even for moderately large
values of L.

Yockey [50] offers another bioinformatic application. The
amino acids used in protein construction by DNA number
N = 20. For a peptide sequence of length L, there are a total
of N possible proteins. For 1-iso-cytochrome c, there are
L = 113 peptides and || = NT = 2013 = 1.04 x 1047 pos-
sible combinations. Yockey shows, however, that active FOO
information reduces the number of sequences over 36 orders
of magnitude to 6.42 x 10! possibilities. The search for a
specific sequence using this FOO structure supplies about a
quarter (I4 = 119 b) of the required (I = 491 b) informa-
tion. The effective search-space size is reduced by a factor
of [w|/[€] =279 = 1.50 x 10736 The reduced size space is
still enormous.

Active information must be accurate. The asymptotic
equipartition property will work only if the target sought obeys
the assigned FOO. As L increases, the match between the target
and FOO table must become closer and closer. The boundaries
of w quickly harden, and any deviation of the target from the
FOO will prohibit in finding the target. An extreme example
is the curious novel Gadsby [48] which contains no letter £.
Imposing a 10% FOO for an E for even a short passage in
Gadsby will nosedive the probability of success to near zero.
Negative active information can be fatal to a search.

1) Searching a Type Class: More restrictive than active
FOO information is a message of length L where the exact
count of each character is known but their order is not. With
this information about the target, the search space shrinks even
further to the space w C w C . The cardinality of this type
class is bounded [9].

|| < (L+ 1)V, (17)

2The derivation is standard [9], [41], [50]. The number of ways {ln]1 <
n < N} objects can be arranged is given by the multinomial coefficient |w| =

Ll Hf:l £y, For large M, from Stirling’s formula, In M! — M In M and
|w| el n L exp(HN:1 £y, In €y,). Applying (14) gives |w| ~ eLHN where
the entropy is measured in nats. A nat is the unit of information when a natural
log is used, for example, in (2). When measured in bits (log, ), we obtain (15).
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From this inequality, we can bind the active information.
From (7)

N
Iy =—log (||7§D)|> >—log ((Lj\_[Ll)> =In—Nlog(L+1)
(18)

where we have used (9).

E. Partitioned Search

FPartitioned search [12] is a “divide and conquer” procedure
best introduced by example. Consider the L = 28 character
phrase

METHINKS * IT * IS * LIKE * A x WEASEL. (19)

Suppose that the result of our first query of L = 28 charac-
ters is

SCITAMROFN * IYRANOITULOVE * SAM. (20)

Two of the letters {E, S} are in the correct position. They are
shown in a bold font. In partitioned search, our search for these
letters is finished. For the incorrect letters, we select 26 new
letters and obtain

00T * DENGISEDESEHT * ERA*xNETSIL. 20

Five new letters are found, bringing the cumulative tally of
discovered characters to {T, S, E, x, E, S, L}. All seven char-
acters are ratcheted into place. The 19 new letters are chosen,
and the process is repeated until the entire target phrase is
found.

Assuming uniformity, the probability of successfully identi-
fying a specified letter with sample replacement at least once in
Q queriesis 1 — (1 — 1/N)%, and the probability of identifying
all L characters in () queries is

1\\2\"
(-0 ())

For the alternate search using purely random queries of the
entire phrase, a sequence of L letters is chosen. The result is
either a success and matches the target phrase, or does not.
If there is no match, a completely new sequence of letters

is chosen. To compare partitioned search to purely random
queries, we can rewrite (5) as

1) ¢

=1-|1-(= .

For L =28 and N = 27 and moderate values of Q, we

have p < ¢ corresponding to a large contribution of active

information. The active information is due to knowledge of

partial solutions of the target phrase. Without this knowledge,

the entire phrase is tagged as “wrong” even if it differs from the
target by one character.

The enormous amount of active information provided by
partitioned search is transparently evident when the alphabet

(22)

(23)
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is binary. Then, independent of L, convergence can always
be performed in two steps. From the first query, the correct
and incorrect bits are identified. The incorrect bits are then
complemented to arrive at the correct solution. Generalizing
to an alphabet of N characters, a phrase of arbitrary length
L can always be identified in, at most, N — 1 queries. The
first character is offered, and the matching characters in the
phrase are identified and frozen in place. The second character
is offered, and the process is repeated. After repeating the
procedure N — 1 times, any phrase characters not yet identified
must be the last untested element in the alphabet.

Partitioned search can be applied at different granularities.
We can, for example, apply partitioned search to entire words
rather than individual letters. Let there be W words each with
L/W characters each. Then, partitioned search probability of
success after () queries is

pw = (1 - (1 —N—L/W)Q)W

Equations (22) and (23) are special cases for W = L and
W =1.1f N"5/W <« 1, we can make the approximation
pw ~ QW N~ from which it follows that the active infor-
mation is

(24)

Iy =~ Wlog, Q. (25)

With reference to (6), the active information is that of W
individual searches: one for each word.

F. Random Mutation

In random mutation, the active information comes from the
following sources.

1) Choosing the most fit among mutated possibilities. The

active information comes from knowledge of the fitness.

2) As is the case of prolonged random search, in the sheer

number of offspring. In the extreme, if the number of
offspring is equal to the cardinality of the search space
and all different, a successful search can be guaranteed.

We now offer examples of measuring the active information
for these sources of mutation-based search procedures.

1) Choosing the Fittest of a Number of Mutated Offspring:
In evolutionary search, a large number of offspring is often
generated, and the more fit offspring are selected for the next
generation. When some offspring are correctly announced as
more fit than others, external knowledge is being applied to the
search, giving rise to active information. As with the child’s
game of finding a hidden object, we are being told, with respect
to the solution, whether we are getting “colder” or “warmer” to
the target.

Consider the special case where a single parent gives rise
to @ children. The single child with the best fitness is chosen
and used as the parent for the next generation. If there is
even a small chance of improvement by mutation, the num-
ber of children can always be chosen to place the chance of
improvement arbitrarily close to one. To show this, let Ax
be the improvement in fitness. Let the cumulative distribution
of Ak be Fa,(z) = Pr[Ax < z]. Requiring there be some
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100

0 ' 20,000 40,000

Fig. 2. Twenty-five emulations of optimization using simple mutation as a
function of the number of generations. The bold line is (28) with kg = 0. One
parent births two children, the fittest of which is kept. There are cases where the
fitness decreases, but they are rare. Parameters are L = 100 and p = 0.00005.

chance that a single child will have a better fitness is assured
by requiring Pr[Ax > 0] > 0 or, equivalently, Fa,(0) < 1.
Generate ® children, and choose the single fittest. The resulting

change of fitness will be Ak = max, Ak, where Ak, is
<p<

the change in fitness of child . It follows that Fa,,,. (z) =
F? _(z) so that the probability the fitness increases is

Pr[Akmayx > 0] =1— F2,(0). (26)
Since Fa,(0) < 1, this probability can be placed arbitrarily
close to one by choosing a large enough number of children
®. If we define success of a single generation as better fitness,
the active information of having ¢ children as opposed to
one is

Ly =~log <1 — Fa,(0)

2) Optimization by Mutation: Optimization by mutation, a
type of stochastic search, discards mutations with low fitness
and propagates those with high fitness. To illustrate, consider a
single-parent version of a simple mutation algorithm analyzed
by McKay [32]. Assume a binary (N = 2) alphabet and a
phrase of L bits. The first query consists of L randomly selected
binary digits. We mutate the parent with a bit-flip probability of
w and form two children. The fittest child, as measured by the
Hamming distance from the target, serves as the next parent,
and the process is repeated. Choosing the fittest child is the
source of the active information. When p < 1, the search is
a simple Markov birth process [34] that converges to the target.

To show this, let k[n] be the number of correct bits on the nth
iteration. For an initialization of kj, we show in the Appendix
that the expected value of this iteration is

k[n] = ko + (L — ko) (1 — (1 —2u)") (28)
where the overbar denotes expectation. Example simulations
are shown in Fig. 2.

The endogenous information of the search is I = L bits. Let
us estimate that this information is achieved by a perfect search

in G generations when k[G] = oL and « is very close to one.
Assume kg = SL. Then

_ log(1l — a) —log(1 — )
og(l—2u)

G
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A reasonable assumption is that half of the initially chosen
random bits are correct, and 8 = 1/2. Seta = (L — (1/2))/L.
Then, since the number of queries is () = 2, the number of
queries for a perfect search (I = Iq) is

. 2log(L)
@ log(1 —2p)"

The average active information per query is thus

L
Iy ~ m log(1 — 2p)

or, since In(1 — 2u) ~ —2p for p < 1

2uL

o=@y

For the example shown in Fig. 2, I, ~ 0.0022 b per query.

3) Optimization by Mutation With Elitism: Optimization by
mutation with elitism is the same as optimization by mutation
in Section III-F2 with the following change. One mutated
child is generated. If the child is better than the parent, it
replaces the parent. If not, the child dies, and the parent
tries again. Typically, this process gives birth to numerous
offspring, but we will focus attention on the case of a single
child. We will also assume that there is a single bit flip per
generation.

For L bits, assume that there are k matches to the target.
The chance of improving the fitness is a Bernoulli trial with
probability (N — k)/N. The number of Bernoulli trials before
a success is geometric random variable equal to the reciprocal
N/(N — k). We can use this property to map the convergence
of optimization by mutation with elitism. For discussion’s sake,
assume we start with an estimate that is opposite of the target at
every bit. The initial Hamming distance between the parent and
the target is thus L. The chance of an improvement on the first
flip is one, and the Hamming distance decreases to L — 1. The
chance of the second bit flip to improve the fitness is L/(L —
1). We expect L/(L — 1) flips before the next improvements.
The sum of the expected values to achieve a fitness of L — 2 is
therefore

L
flips(L —2) =1+ —.
ips(L—2) = 1+
Likewise
) L L
#ﬂlpS(L—?)) —1+ﬁ+m
or, in general
-1 I
flips(L — ¢) = . 29
# flips(L — () mgo T (29)
It follows that
# flips(L —¢) = L[Hy — Hr—4] (30)
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Fig. 3. One thousand implementations of optimization by mutation with
elitism for L = 131 b.
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Fig. 4. Average of the curves shown in Fig. 3 superimposed on the stair-step
curve from (30). The two are nearly graphically indistinguishable.

where?

=

L
He =)
k=1

is the Lth harmonic number [3]. Simulations are shown in
Fig. 3, and a comparison of their average with (30) is in Fig. 4.
For ¢ = L, we have a perfect search and

# flips(0) = LH.

Since the endogenous information is L bits, the active informa-
tion per query is therefore

1
I, = ——bits per query.
@ H, per query

This is shown in Fig. 5.

G. Stair-Step Search

By stair-step search, we mean building on more proba-
ble search results to achieve a more difficult search. Like
partitioned search, active information is introduced through
knowledge of partial solutions of the target.

We give an example of stair-step search using FOO. Consider
the following sequence of K = 3 phrases:

1) STONE_;

2) TEN_TOES_;
3) _TENSE_TEEN_TOOTS_ONE_TONE_TEST_SET_.

3The conventional notation for the Lth harmonic number is H . We use H,
to avoid any confusion with the symbol for entropy.
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Fig.5. 1/Hp is the active information per query for optimization by mutation
with elitism for a bit string of duration L. A plot of 1/H, versus L is shown
here. The asymptote follows from Hy — In(L) + v as L — co where
v = 0.5772156649 . . . is the Euler—-Mascheroni constant.

The first phrase establishes the characters used. The second
establishes the FOO of the characters. The third has the same
character FOO as the second but is longer. From an N = 27
letter alphabet, the final phrase contains I = 36log, 27 =
171 b of endogenous information. To find this phrase, we will
first search for phrase 1 until a success is achieved. Then, using
the FOO of phrase 1, search for phrase 2. The FOO of phrase 2
is used to search for phrase 3.

Generally, let p, [k] be the probability of the nth character
in phrase k£ and let the probability of achieving success for
the all of the first k phrases be P, = Prlk,k — 1,k —2,...,1].
Then

Py = P11 P (31)
where the conditional probability is Py, = Prlk|k — 1,k —
2,...,1]. The process is first-order Markov and can be
written as

N
Pypoy =Pr(klk —1] = [[ o™k -1 32
n=1

where ¢, [k] = Lgp,[k] is the occurrence count of the nth letter
in the kth phrase and Lj is the total number of letters in
the kth phrase. Define the information required to find the
kth phrase by I = —log(Py). From (31) and (32), it fol-
lows that

I =T 1 + Ly H(k, k — 1) (33)

where the cross entropy between phrase k and k — 1 is [32]

N
H(k,k—1) = palk]logs palk — 1].

(34)
n=1
The solution to the difference equation in (33) is
K
Ix =Y LyH(kk—1) (35)

k=1
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where H(1,0) := H(1). The active information follows as

I, =1 —Igk. (36)

Use of the K = 3 phrase sequence in our example yields
I = 142 b corresponding to an overall active information of
I. =29 b. Interestingly, we do better by omitting the second
phrase and going directly from the first to the third phrase. The
active information increases to I, = 50 b.* Each stair step costs
information so that a step’s contribution to the solution must be
weighed against the cost.

IV. CRITIQUING EVOLUTIONARY-SEARCH ALGORITHMS

Christensen and Oppacher [7] note the “sometimes-
outrageous claims that had been made of specific optimization
algorithms.” Their concern is well founded. In computer
simulations of evolutionary search, researchers often construct
a complicated computational software environment and then
evolve a group of agents in that environment. When subjected
to rounds of selection and variation, the agents can demonstrate
remarkable success at resolving the problem in question.
Often, the claim is made, or implied, that the search algorithm
deserves full credit for this remarkable success. Such claims,
however, are often made as follows: 1) without numerically
or analytically assessing the endogenous information that
gauges the difficulty of the problem to be solved and 2) without
acknowledging, much less estimating, the active information
that is folded into the simulation for the search to reach a
solution.

A. Monkey at a Typewriter

A “monkey at a typewriter” is often used to illustrate the
viability of random evolutionary search. It also illustrates the
need for active information in even modestly sized searches.
Consider the production of a specified phrase by randomly
selecting an English alphabet of N = 27 characters (26 letters
and a space). For uniform probability, the chance of randomly
generating a message of length L is p = N~%. The chances
are famously small. Presentation of each string of L characters
requires — log,(p) b of information. The expected number of
repeated Bernoulli trials (with replacement) before achieving a
success is a geometric random variable with mean

1
Q= 2; queries. 37

Thus, in the search for a specific phrase, we would expect
to use

B— _ logs(p)
p

= N%log, N* bits. (38)

“4Deleting the first phrase also increases the active information—but by not
as much. If the second phrase is searched using a uniform prior, then the added
information for finding the third phrase is /1 = 38 b.
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Fig. 6. For N = 27, the number of bits B expected for a search of a phrase of
length L. From (38), as L — oo, we have the asymptote log(B) — Llog N.
This explains the linear appearance of this plot.

Astonishingly, for N = 27, searching for the L = 28 char-
acter message in (19) with no active information requires
on average B = 1.59 x 10*2 b—more than the mass of
800 million suns in grams [11]. For B = 10190 b, more than
there are atoms in the universe, solving the transcendental equa-
tion in (38) reveals a search capacity for a phrase of a length
of only L = 68 characters. Even in a multiverse of 101000
universes the same size as ours, a search can be performed for
only L = 766 characters. A plot of the number of bits B versus
phrase length L is shown in Fig. 6 for N = 27.

Active information is clearly required in even modestly sized
searches.

Moore’s law will not soon overcome these limitations. If we
can perform an exhaustive search for a B bit target in 1 h, then,
if the computing speed doubles, we will be able to search for
B + 1 b in the same time period. In the faster mode, we search
for B bits when the new bit is one, and then for B more bits
when the new bit is zero. Each doubling of computer speed
therefore increases our search capabilities in a fixed period of
time by only 1 b. Likewise, for P parallel evaluations, we are
able to add only log, P b to the search. Thus, 1024 machines
operating in parallel adds only 10 b. Quantum computing can
reduce search by a square root [17], [24]. The reduction can be
significant but is still not sufficient to allow even moderately
sized unassisted searches.

V. CONCLUSION

Endogenous information represents the inherent difficulty of
a search problem in relation to a random-search baseline. If
any search algorithm is to perform better than random search,
active information must be resident. If the active information
is inaccurate (negative), the search can perform worse than
random. Computers, despite their speed in performing queries,
are thus, in the absence of active information, inadequate for
resolving even moderately sized search problems. Accordingly,
attempts to characterize evolutionary algorithms as creators of
novel information are inappropriate. To have integrity, search
algorithms, particularly computer simulations of evolutionary
search, should explicitly state as follows: 1) a numerical mea-
sure of the difficulty of the problem to be solved, i.e., the
endogenous information, and 2) a numerical measure of the
amount of problem-specific information resident in the search
algorithm, i.e., the active information.
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APPENDIX

Derivation of (28) in Section III-F2.

Since 1t < 1, terms of order u? and higher are discarded.
Let Zj[ [n] be the number of correct bits that become in-
correct on the nth iteration. We then have the conditional
probability

Pr[Z[n] = q|k[n]]
(1= )kl ~ 1 — pk[n], q=0

= { pk[n](1 = @)V = k), g=1 (39)
0, otherwise.

Similarly, let O[n] be the number of incorrect bits that become
correct on the nth iteration. Then

L-u(N—k), =0
Pr(O[n] = glk[n]] = § w(N = k[n]), g=1

0, otherwise.

(40)

For a given k[n], O[n] and Z[n] are independent Bernoulli
random variables. The total chance in fitness is

(41)

Since 1 < 1, the random variable Ak[n] can take on values
of (—1, 0, 1). The parent is mutated twice, and two mutated
children are birthed with fitness changes Akq[n] and Aka[n].
The child with the highest fitness is kept as the parent for the
next generation which has a fitness of

kln + 1] = k[n] + Ax|n] (42)

where Ax([n] = max(Aki[n], Aks[n]). It then follows that

Pr[As = q|k]
2(L = k)p(l — Lp) + (L — k) ik, g=1
~q 2(1 = Lpkp + (1 = Lu)?, q=0
k2 2, q=—1
(43)

where we have used a more compact notation, e.g., k[n| = k.
Ridding the equation of 2 terms gives

2(L - k)M» g=1
Pr[Asx =qlkl =~ { 1 —2(L — k)u, qg=0 (44)
Oa q= -1

Thus, for 1 < 1, there is a near-zero probability of generating
a lower fitness, since doing so requires both offspring to be
of a lower fitness and has a probability on the order of u2.
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The mutation search is then recognized as a Markov birth
process.

The conditional expected value of (44) is E[Asx|k] = 2(L —
k)u. We can then take the expectation of (42) and write

E[n + 1) = k[n] + 2(L — k[n])p or, equivalently, k[n + 1] =
(1 —2u)k[n] + 2Lp, where the overline denotes expecta-
tion. The solution of this first-order difference equation

is (28).
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ERRATUM

Section IILLE discusses the example of a partitioned
search. This is mistakenly identified with the Dawkin’s
Weasel search referenced as [12]. Dawkins writes “The
omputer examines the “progeny’ of the original phrases,
and chooses the one, however slightly, most most resem-
bles the target phrase...” Dawkins clearly describes some
form of genetic algorithm and our initial interpretation
was incorrect.
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