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Some  Aspects of the  Theorv  and  Measurement  of 
1 J 

Frequency  Fluctuations  in  Frequency  Standards 

Abstract-Precision quartz oscillators have three main sources 
of noise contributing to frequency  fluctuations: thermal noise in the 
oscillator, additive  noise  contributed by auiliary circuitry such  as 
AGC, etc., and fluctuations in the quartz  frequency itself as well as 
in the reactive elements associated with the crystal,  leading to an 
I-1 type of power spectral  density in frequency fluctuations. Masers 
are influenced by the first two types of noise, and probably also by 
the third. 

The influence of these  sources of noise on frequency  fluctuation 
vs. averaging time measurements is discussed. The f-’-spectral 
density leads  to  results  that depend on the length of time  over which 
the  measurements  are made. An analysis of the effects of finite 
observation  time is given. 

The characteristics of both passive and active atomic standards 
using  a servo-controlled oscillator are discussed. The choice of servo 
time  constant  influences the frequency  fluctuations  observed as a 
function of averaging time and should be chosen for best  performance 
with a given quartz oscillator and atomic  reference. 

The conventional methods of handling  random signals, i.e., 
variances,  autocorrelation, and spectral  densities, are applied to  the 
special case of frequency and phase  fluctuations  in oscillators, in 
order to obtain meaningful criteria for specifying oscillator frequency 
stability. The interrelations  between these specifications are de- 
veloped in the course of the paper. 

T 
I. INTRODUCTION 

HE PURPOSE of this  paper  is  to  present  some of 
the  theoretical  and  practical  aspects of frequency 
fluctuation  measurements  in  frequency  standards. 

In  Section  I1  the  fundamental definitions of terms used 
in specifying  frequency  stability  both  in  the  time  domain 
and  the  frequency  domain  are  developed,  and  the  inter- 
relations  between  these  terms  are  established.  Section 
I11 describes  briefly  several of the  commonly used tech- 
niques  for measuri-ng frequency  stability  and in each 
case  relates  the  measurement  to  the  appropriate  mathe- 
matical  description  in  Section 11. 

The  three  main  sources of frequency  fluctuation  in 
oscillators are discussed  in  Section IV: thermal  and 
shot noise in the  oscillator,  additive noise (in the  am- 
plifier,  for example),  and  oscillator  parameter  changes 
giving  rise to   an f-1 power spectral  density of frequency 
fluctuations.  Finally, in Section V we consider the fre- 
quency  fluctuations  in  atomic  frequency  standards. 

This work was supported in part  by  the  Joint Services Electronics 
Manuscript received October 11, 1965; revised December 1, 1965. 

Program under Contract DA4-36-039-AMC-O3200(E). 
L. S. Cutler is with the Physics Research Division, Hewlett- 

Packard  Company,  Palo Alto, Calif. 

the Research Laboratory of Electronics, Massachusetts Institute of 
C. L. Searle is with the  Department of Electrical Engineering and 

Technology, Cambridge, Mass. 

11. SPECIFICATION OF FREQUENCY  STABILITY 

A .  Definitions 

The signal  from an oscillator may be  described  by 

v ( t )  = - 4 0 )  cos [wot + 9(t)l (1) 

where v ( t )  represents  a  voltage  or  current, A ( t )  and 
+(t)  are slowly  varying  real  functions of time,  and U O  is 
a  constant. A ( t )  is the  variable  amplitude of the signal 
and  does  not  contribute  directly  to  frequency  fluctua- 
tions. (Of course, in frequency  multipliers  and  other 
nonlinear  devices,  conversion of amplitude  modulation 
to  phase  modulation  and vice versa  can  occur.  Nonethe- 
less, a t   a n y  given  point  in the  system, (1) is valid.) I t  is 
assumed  that  the  time origin and wo are chosen so that  
+(t)  has zero time  average  and 

- 44- T/2) 
li m = 0. 
T- m T 

These  conditions  simplify the  mathematics  (but will 
have  to  be relaxed  later). The  instantaneous  angular 
frequency  is 

In all that  follows we will refer to  angular  frequency  as 
frequency. 

The  average  frequency of the signal o(t)  is by defini- 
tion 

( ~ ( t ) )  = lim ’s T’2u(t) dt 
T-m T - T i 2  

where the  symbol ( ) indicates  time  average  over a n  
infinite  time.  Therefore, we see  from (1) and (2) that  
+(t)  is the  instantaneous  phase  angle of the  oscillator 
with  respect  to  an ideal  oscillator of frequency 00, and 
+(t )  is the  frequency  departure  away  from UO.  

Of particular  importance in the specification of fre- 
quency  stability  is  the  frequency  departure  averaged 
over  some  finite  time 7 :  
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where  the  symbol ( )t,r signifies the  average  over a 
finite  time r ,  centered a t  time t .  Similarly, we can  define 
the  finite-time  average of the  phase 

(4)t.r = - s t+r!2t$(t’) dt‘. (5) 
7 t-r/2 

Fer  futufe  calculations we shall need the  accumulated 
phase  over a time r .  From (4), 

W ( t )  3 4(t + 7 / 2 )  - 4(t - r / 2 )  = r ( $ ) t , r .  (6 )  

Equation (4) can be depicited  in  signal-processing 
terms as shown  in  Fig. 1. Equation (4a)  ‘indicates that  
( c $ ) ~ , ~  is found  by  averaging 4 over  a  time r .  This  averag- 
ing  can  be  accomplished  by  passing  the  signal $( t )  (in 
the  form of a voltage,  perhaps)  through  a  filter  with  a 
square  impulse  response, as shown  in  Fig. 1. The re- 
quired  shape of this  response is found  by  solving  (4a), 
assuming  that $ ( t )  is  a  unit  impulse a t  t = O . l  Mathe- 
matically,  this  impulse  response  can  be  described  by 

u(t) - u(t - r )  rect, ( t  - r / 2 )  
h ( t )  = - - 

* (7) 
T 7 

1 AND I OSCILLATORS 

DETECTOR 

Fig. 1. Representation of (4a)  and (4b) in signal-processing terms. 

In a similar  way,  (4b)  can  be  depicted  in  signal- 
processing terms as shown  in  the  lower  branch of Fig. 1. 
If we work  directly  with  the  phase  signal + ( t ) ,  then  by 
inspection  the  appropriate  impulse  response  in  this 
case  contains  two  impulses,  both of area l/r,  as  shown. 
(Again  a  time  delay of r /2  seconds  has  been  introduced.) 
This  response  is  described  by 

6 ( t )  - 6(t - r )  
h b ( t )  = (8) 

7 

Because  both  filters h, and ha are  clearly  difficult  to 

with limits  symmetric about t .  However, to insure physical realiza- 
1 For mathematical symmetry,  the integrals  have been written 

bility of the filter, the impulse response has been drawn from 0 to T ,  

changed to t and t +T, respectively. This corresponds to a time delay 
implying that  the lower and upper limits of integration  have been 

of ~ / 2  seconds. 

realize  in  practice,  systems  to  measure ( q 5 ) t , ,  usuallydo 
not  conform  directly  to  either of these  signal-processing 
diagrams.  Practical  systems  for  measuring (4)t , r  are 
presented  in  Section 111. 

B. Variance 
Because +( t ) ,  and  hence + ( t )  and ( + ) t , ,  are  random 

variables,  some  measure of their  dispersion  is  needed. 
For  this  purpose we often  calculate  the  standard  devia- 
tion u or  the  variance u2, the  latter being  defined as  

- .“[x] = ( X  - X)Z = x2 - ( n  (9) 

where  the  bar signifies either  time  or  statistical  average. 
The  variance of the  frequency  averaged  over  time r is 
thus 

. z [ (4>t ,r l  = (4)t ,r2.  (10) 

Here  the  variance  is  identical  to  the  mean-square  value 
because  the  mean  value  is  zero: 

__ 1 t+7 /2  ___ 
(4)t, ,  = -s @(t’) dt’ = 0 (11) 

on the  basis  that,  by  definition, +(t’) eqdals  zero. A 
block  corresponding to  (10) is  included  in  Fig. i. 

C. Autocorreht ion  and  Spectral   Densi ty  

7 t - - r / ~  - 

The  freduency  stability of an oscillator can also  be 
specified in  terms of autocorrelation  functions  (also 
called  autocovariance-see,  for  example,  Blackman and 
Tukey [l]) or  spectral  densities.  Returning  for  a 
moment  to (l), i t  is clear that  four possible  spectra 
might  be of interest  in  describing  the  properties of the 
signal v ( t ) .  

1) The  complete  spectrum of v ( t ) .  This  is  often  called 
the  RF  spectrum, because i t  includes  the  carrier 
and all  sidebands. 

2) The  spectral  density of A ( t ) ,  which  could  be  found 
by  passing v ( t )  through  an  ideal AM detector,  and 
measuring  the  spectrum of the  detector  output. 

3) S,(w), the  spectral  density of r$(t), found  by  pass- 
ing v ( t )  through  an  ideal  phase  detector,  and 
measuring  the  detector  output  spectrum. 

4) Si(w), the  spectrum of d ( t ) ,  obtained  by  spectral 
analysis of the  output of an ideal FM  detector. 

The  RF  spectrum of v ( t )  is of great  importance  in 
many  applications,  but  for  very  stable  oscillators  in 
which the  sidebands  are  orders of magnitude  smaller 
than  the  carrier  everywhere  except close to  the  carrier, 
i t  is  often  difficult to  measure  directly.  Thus,  for  stable 
oscillators  the  most  useful  spectral  representation of the 
frequency  stability  is  usually & ( w )  or Si(o). .For  the 
frequently  encountered  case  where  the AM power 
spectral  density is negligible, and  the  mean-square 
value of the  phase  is  much  less  than  one  rad2,  for  fre- 
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quencies  greater than  some  minimum  value,  the R F  
power  spectral  density  (two-sided) is 

where P is the  carrier  power,  and  the  expression  is  valid 
except  for the  carrier frequencies, &uo, and  narrow 
bands  surrounding  them  containing  all  the  high  mod- 
ulation-index,  low-frequency  modulation  sidebands. The 
low modulation-index  portion of the power spectral 
density of the  sidebands  has  the  same  shape  as  the 
phase  power  spectral  density  because  only  the  first- 
order  sidebands  are of any consequence. 

The  spectral  density of a random  signal is defined as  
the  Fourier  transform of its  autocorrelation  function 
[ 2 ] .  Thus, we first  define  the  autocorrelation of the 
phase  as 

R+(T) = 4(t + 7 / 2 ) 4 ( t  - . /2)  
1 I- T i 2  

where the  bar signifies statistical  average,  and  ergodicity 
is assumed.  Similarily, R;(r) is the  autocorrelation  func- 
tion of the  frequency  departure 

&(7) = $(t + T / 2 ) $ ( t  - T / 2 )  
TI2  

T-m T - T , I ~  
= lim ‘s 8,(t + T/2)8 , ( t  - r / 2 )  dt .  (13) 

Writing  these  both as functions of 7 alone  implies that  
+ and 8, are  stationary in the wide  sense  [3]. 

As pointed  out  above,  the  spectral  density of the 
phase  (using  two-sided  spectra) is 

S+(w) = s “R+(T)e-jw7 dr = 2 R4(r) cos w r  dr. (14) 
--?o 

I t  also follows that  R+(T) is the  Fourier  transform of 
S4 (w)  : 

R+(T) = - S+(w)ejw7 dw = S+(w) cos UT dw. (15) 
1 “  

2 7  -m r 

In a  similar  way, Si(@) and Ri(7) also  form a Fourier 
transform  pair,  identical  in  form  to (14) and (15). 

On  the  basis of our original  definitions, $ ( t )  was  the 
time  derivative of r$(t). Differentiation  in  the  time  do- 
main  corresponds  to  multiplication  by ju in  the fre- 
quency  domain  and,  hence,  multiplication  by u2 in 
terms of spectral  densities. Thus 

Sg(w) = w2S+(w>. 

In  dealing  with  electrical signals it  is  customary  to 
calculate  the power spectral  density  (units of watts/ 
hertz)  for  signals  that  exist  for all time,  and  the energy 
spectral  density  (units of joules/hertz)  for  signals  that 
exist  only  for  some  finite  time  (pulse  signals).  Equations 

(1 2 ) ,  (14),  and  (15)  imply  that S+(u) is a  “power”  spec- 
tral  density,  even  though  there is no power  involved 
(the  units  are  actually  radians2  per  hertz).  In  this  paper 
we shall  define all spectra  in  terms of “power”  and  not 
“energy.” T o  emphasize  this we  shall  use  theasornewhat 
inappropriate  term  “power  spectral  density.” Also, in 
what follows we shall  always use  two-sided  spectra. 

There  are, of course,  other  spectral  representations of 
frequency  stability  that  are closely related  to S+(u) 
and S;(u). As an  example,  often  the  FM noise of a 
microwave  oscillator  is specified in terms of the  rms 
voltage  measured  in  a  1-kc  bandwidth at the  output of 
a  frequency  discriminator [ 2 7 ] .  Following the  conven- 
tion  for  frequency-modulated  waves,  this  measurement 
is plotted  as Af, the  rms  frequency  deviation  measured 
in a 1-kc bandwidth, vs.  frequency fm (the  modulating 
frequency in the sinusoidal  case, but  the  center  fre- 
quency of the 1-kc  measurement  passband). 

This  measurement  can  be  related  to Si(w), the spec- 
tral  density of the  frequency,  by  noting from (13) that  
for r = O ,  

and, because of the  Fourier  transform  relationship  be- 
tween R;(r)  and S;(u), 

2 a  

Combining  these  two  equations, we obtain 

I o m  

This  result, which  in  general  relates the  mean-square 
value of a  function  to  the  total  area  under  its  spectral 
density  curve, is a  special  case of Parseval’s  Theorem. 
For  the  present case, we want  the  mean-square  value of 
the signal out of a  1-kc  filter, and  thus  the  appropriate 
relation  is 

for  a  sharp-edged  filter. In  the  case where Si(@) is  fairly 
constant  over  the  1-kc  bandwidth, we find 

(Aj)z E 2oooS4(w).  

D .  Relations Between Variance and  Spectral Densities 
The  two  major  methods of specifying the  frequency 

stability of an oscillator  presented  above,  namely the 
variance of the  frequency  departure  averaged  over  time 
T and  the power  spectral  density,  are  in  fact closely  re- 
lated  via  the  autocorrelation  function  [4], [ 5 ]  (see 
Appendix I) .  Specifically, the  variance of the  average 
frequency  departure  can  be  written  either  in  terms of 
R+(r)  or Ri( r ) .  
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This  variance is  often  normalized to  yield the  variance 
of the  average fractional frequency  departure  by  divid- 
ing  both  sides of (16) by wgz. 

By  substituting (15) into  (16a), we can  eliminate R+, 
and,  hence, express the  variance  directly in terms of the 
power  spectral  density of frequency  or  phase.  The  re- 
sulting  expressions  are 

2 "  - - -  
a72 S-" S+(w) sin2 w7/2 dw. (17b) 

Although u * [ ( c $ ) ~ , ~ ]  (or its normalized  equivalent) is 
the  variance  most  commonly used in specifying  fre- 
quency  stability, we include  for  convenience  formulas 
for  several  other  variances  written  in  terms of auto- 
correlations  and  spectral  densities: 

= variance of average  phase (18) 

4 W l  = 2[R+(O) - R+(7)1 
= variance of accumulated  phase (19) 

= variance of phase (20) 

1 "  
Cr2[4( t ) ]  = Rg(0) = -s Sg(w)  dw 

= 's, w2S+(w) dw. 

* o  

= variance of frequency 
00 

a 

The preceding  formulas hold  for  wide-sense stationary 
random processes or for time  functions  that  have  sta- 
tionary  means  and  autocorrelation  functions  that  de- 
pend  only  on  the  time difference. 

E. Signal-Processing Summary 
The  interrelations  between  power  spectral  density  and 

variance of average  frequency  departure, which have 
been stated  mathematically  above,  are  shown  in  signal- 
processing terms in  Fig. 2. Thus,  the figure  serves as  a 
summary of the preceding  discussion.  Practical  methods 
of performing  these  data-processing  steps  are  discussed 
in  Section 111. 

At  the  top  left of Fig. 2 is the  system  to be  analyzed 
(for example,  two  crystal  oscillators  plus  phase  detector 
and nulling  servo,  see  Section 111-C). We  assume  that 
the  output from the  system is the  phase difference, 
+(t) .  The  first row  indicates the  real-time  data process- 
ing  required  to find ( t j ) t , r  and  its  variance, based  on  Fig. 
1. The second  row  in  Fig. 2 shows  the  data  reduction  re- 
quired  to specify the oscillator  stability  in  terms of 
spectral  densities,  either S4(w) or Si(w). In  addition, 
Fig. 2 shows  the  steps necessary to  find the  variance 
from  Si(@),  i.e.,  (17a).  Here,  however, we emphasize  the 
relationship  between  the  time-domain  operations  and 
the  corresponding  operations  required  in  the  frequency 
domain.  Corresponding  to  convolution  with h,(t), we 
have  multiplication  by 1 Ha(&) I 2, where H.(jw) is the 

TL++ SYSTEM 

I 

REAL-TIME 
6 (t) 

DATA PROCESSING 

'\ 

2 
DATA REDUCTION IN 

THE FREQUENCY DOMAIN 
(SPECTRAL  DENSITY) 

I 

-1 SQUARE 1- 
METER 

SPECTRUM 
ANALYZER 

(OR COMPUTER) 

(2 2) 

FOURIER 
TRANSFORM 

3 

DATA REDUCTION IN 
THE TIME  DOMAIN 

AUTOCORRELATOR 

(AUTOCORRELATION) (12) 

PERFORM OPERATION: - 
(OR COMPUTER) L I R o ( 0 ) - R g ( r j ]  

. 
r 2  

(160) 

Fig. 2.  Summary of methods of data processing. Numbers in brackets refer to equation numbers in the text. Double arrows ( < - - - - -  >)  
indicate Fourier transform relationship (time< - - - - -  >power spectral density). 
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Fourier  transform of ha@). Specifically 

Thus, we find that  the  spectral  density of (c$ )~ ,~  is 

s ( ~ ) , , ~ ( w >  = s ~ ( w )  1 Haciw> 1 2 *  
Parseval’s  Theorem  states  that  finding  the  mean-square 
value of (d)t,r is identical  to  finding  the  area  under 
S(d,t,T(w). The  required  integration of .S(i,t,T(o) is 
specified in  Fig. 2 .  

The preceding  discussion  indicates that   the first  two 
rows of Fig. 2 are closely  related  in that  each  operation 
in one  row  has  its  counterpart  in  the  other.  Thus,  the 
diagram  can  be  traversed  not  only  along  the  indicated 
solid lines, but  also  vertically  between  corresponding 
variables  in  the  first  two rows. Mathematically  this 
vertical  movement  is  accomplished  by  applying  an 
appropriate  Fourier  relation  (time + - - - + spectral 
density);  conceptually we merely  move  from  the  time 
domain  to  the  frequency  domain. 

The  third row  in  Fig. 2 shows  the  operations  required 
to  find the  variance  via  the  autocorrelation  function, 
i.e., (16a). 

Figure 2 indicates  that  there  are  alternate  paths  for 
calculating  many of the  quantities of interest  here. 
Although  for a particular  problem  one  method will usu- 
ally  be  much  simpler  than  others,  the  alternate  paths 
provide a useful  check on computations. As an  example 
of such  a  calculation,  assume  that S+(o) is  band-limited 
white noise, as shown in Fig.  3(a).  (This  model  for a 
phase  power  density  spectrum  is  often  encountered  in 
frequency  standards.)  Let us first  calculate ~ * [ ( 4 ) t , ~ ]  
following the  method outIiaed in  the second  row of Fig. 
2 .  First we find Sd(w). The  result,  shown  in  Fig.  3(b), 
indicates.a  predominance of high-frequency noise. The 
variance  can  now  be  found  by  multiplying &(a) by 
I Hal to  yield S,i,t,r(o) and  then  integrating. Of course, 
S(;,t,T is a function 4f both o and  the  averaging  time r ;  
in  this  case 

1 
w 2 2  
a- Tf 7 2  

- = - -  -cosw, - w e  < w < wc 

= o  elsewhere 

From Fig. 2 

Without  performing  the  integration, we can  see that  for 
large r ,  the  first  integral will dominate,  and  thus 

I 

0.1 : 

N 
c 
0 
W 

cn 9 QOI; 

fi-- L 

a 
7 
I 

@J 
b 

0.001 r 

0.0001 
0 I IO 100 

AVERAGING TIME 7 (SECONDS) 

( 4  
Fig. 3. Example: calculation of g[(4)c,7] for band-limited white 

phase noise. (a) Power density spectrum of phase, rad’/hertz. 
(b) Power density spectrum of frequency, (rad/s)’/hertz. (c) 
Autocorrelation of phase, rad’. (d) Variance of average frequency, 
(md/sY* 
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.Also, for T very  small,  the H,( jw)  function is approxi- 
mately  flat  over  the  range -wc<w<wc,  SO multiplica- 
tion  by I Hal 2 leaves Si  relatively  unchanged.  Thus, in 
this  case 

The  third row of Fig. 2 indicates  that  an  alternative 
method of finding the  variance is via  the  autocorrela- 
tion.  Because &(w)  is a  square pulse of unit  height  and 
length 2wc, we find from  (15) that  

R d T )  = +-] w C  sin W ~ T  

as  shown in Fig.  3(c).  Equation  (16a)  indicates  that  the 
variance  can  be  found  by  multiplying  the difference 
between R+(T) and  its  value  at r = 0 by  the  factor 2 / ~ ~ .  
The  result is  shown  in  Fig.  3(d) ; here wc,  the  width of the 
noise spectrum,  has  been  arbitrarily  set  equal  to a / 2  for 
ease of calculation.  Note  that  the  general  shape of the 
variance  can  be  sketched  by  inspection  as  a  basic 1 / ~ ~  
behavior  perturbed  by  the  autocorrelation differ- 
ence  term.  As  a  check on previous  calculations, we see 
that  because & ( T )  approaches  zero  for  large T ,  

as before. 

F.   F in i t e   Da ta   Leng th  
The preceding  derivations  and  discussion  have  all 

been  based on the  assumption  that  the  functions 4(t) 
and d( t )  exist  for  all  time. In  practice  this  is  not so; 
measurements  can  only  be  made  over  some  finite  time T.  
Under  these  conditions we can  only  make estimates of u 
and S. These  estimates  (denoted 6, 3) are  themselves 
statistical  variables,  with  variances  and  all  other  prop- 
erties  associated  with  random processes. This problem 
is treated in Appendix 11, and  at  greater  length in Allan 
[6].  From  Appendix 11, (76),  the  average  value of the 
variance of average  frequency  departure is 

The  corresponding  relation  for  the  case of continuous 
data  is, from  Fig. 2 ,  

1 "  
u2[(i)t.,I = - S(i),,Jw) dw. 

2?r --p 

Equation (23)  differs  from this expression,  in that  effec- 
tively  the low-frequency  portion of the  spectrum of 
S(;,t,, (i.e.,  below w E 2 / T )  is  removed  before  the  in- 
tegration. 

Clearly,  the effect of the  variance of  measuring r$(t) 
for  only  a  finite  time T will depend on the  shape of the 
spectral  density. Specifically, if S { G ) ~ , ,  is relatively wide- 
band,  such  that  most of the power is a t  frequencies 
higher  than w 2 2 / T ,  then  the  variance is not going to  be 
appreciably  affected  by  the  finite  measurement  time T.  
On the  other  hand, if S(i,t,, is  relatively  narrow-band,  or 
is greatly  peaked a t  low frequencies,  then  the  apparent 
variance  based on data  over  time T is  going to  be  con- 
siderably  smaller  than  the  true  variance. As an  example 
of this,  in  the  case of l/f-frequency noise  (i.e., S;(w)  
= k / w ) )  the  true  variance is  finite,  whereas  a  finite  ob- 
servation  time  always  gives  a  finite  result  for 2 (see 
Appendix 11). 

We  can  assess  from  a  signal-processing  point of view 
the effect on the  spectral  densities Sg and  Si of making 
measurements for a  finite rather  than infinite  time. In 
the  time  domain,  phase  data  acquisition for a  length of 
time T can  be  represented  by  multiplying  the  signal 
4 ( t )  (assumed to  exist for  all time),  by  a pulse of 
unit  height  extending  from - T / 2  to  T / 2 .  The  cor- 
responding  operation  in  the  frequency  domain  is  con- 
volution  with  the  function 

(see Appendix I I). 
For  example,  the  average  value of the  estimate of the 
phase  spectral  density  is 

sm = Sdw) (8 I H,(jw) ( 2  (25)  

where the  symbol €3 indicates  convolution.  Thus,  the 
effect of finite data  length is to  blur  the  spectrum  some- 
what,  thereby  making i t  impossible to  resolve  frequency 
components on a finer  scale than A w g 2 / T  (see Appendix 
11). 

111. MEASUREMENT TECHNIQUES 
There  are  several  well-known  techniques  for  making 

measurements of some of the  quantities described 
above.  Some of these will now be  considered. 

A .  Multiple-Period  Technique 
The general  system of a multiple-period  measurement 

is  shown in Fig. 4. Two signal  sources  slightly offset 
in  average  frequency feed two  identical  channels 
through  optional  frequency  multipliers  to a mixer. (The 
multipliers  may  be used to increase the resolution and 
sensitivity of the  measurement.)  The  counter  then 
measures  the period of the mixer output. 

The  output  from the mixer  contains  all  the  desired 
frequency  and  phase  information.  That  is, if the  two 
signal  sources  have  exactly  the  same  statistics  for +l(t)  
and r$P(t) but  are  uncorrelated,  then all the  fluctuation 
may  be  assumed  to  be in one  channel v'? times  as  large 
as  that  channel  alone, while the  other  channel  may  be 
assumed  to  be perfect. 
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Fig. 4. Multiple-period measuring system. 

Thus, we can  assume  the mixer output  signal  to  be of 
the form 

Y o ( f )  = A cos (wot + q5(t)) (26)  

where A ,  wo and 4 are  as defined  in (1), except  that  here 
wo represents  the  constant  frequency difference between 
the  two oscillators, and 4 is the  phase difference. The 
period of the mixer output waveform  is  measured by 
using a counter  to  determine  the  time r required  for NO 
periods of oo(t).  The  relation  between  the  counter  output 
r and  the  phase is 

2 ~ N o  = WOT + 6 ( ~ )  - $(O). ( 2 7 )  

Xote  that, in  this  method,  the  time r is not  constant. I n  
fact, 7 is the  quantity  that  carries  the  information  about 
the  phase  variations.  Specifically,  let 

and 

T = TO - AT. (29) 

Then ( 2 7 )  reduces t o  

@(T)  - $(O) = WOAT. (3 0) 

If w&<<1 and d(O)A7<<1, then  only  very  small  error  is 
caused  by  replacing $(r)  by +(TO). (The process of 
averaging  over  many  measurements  helps  here.)  The 
multiple-period  technique  thus  measures  essentially 
+ ( t + 7 0 )  -4(t). Dividing  by 7 0  to  reduce i t  to  the form 
of (4), we thus  obtain from (30) 

44 + TO) - 40) WOAT 
= (4)f,rO = - . (3 1) 

7 0  7 0  

Thus  the  mixer-counter  combination does, in fact,  per- 
form the  function  described  by (4) and Fig. 1. The 
standard  deviation of (d)t ,ro can  be  found  by  making 
repeated  measurements: 
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Fig. 6.  Measurements  with multiple-period system. 

Figure 5 shows  a  block  diagram of a  versatile  system 
that  allows the  two oscillators to  have zero  offset. This 
feature  permits  the  system noise to  be  evaluated  by 
feeding both  channels  from  one  source.  The offset is 
obtained  by  the  frequency  synthesizer whose fluctua- 
tions  do  not  greatly  degrade  the  measurement, since the 
oscillator  fluctuations  have  been  multiplied  by 1840 
in the 20 Mc/s difference  frequency  before  the  compari- 
son is made.  Figure 6 shows  some  typical  results ob- 
tained  with  this  system. 

From a  practical  standpoint  the  system  gives good 
results  for  averaging  times  greater  than  seconds, 
and is particularly good  for times  greater  than lo-' 
seconds. 
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B. Phase Detector  Techniques [7] ,  [8] 

Figure 7 shows  a  typical  phase  detector  or  multiplier 
measurement  technique. If the t\vo  signals are  identical 
in  frequency  and  are  placed  in  quadrature  they  may  be 
represented  as 

If the difference  between +2( t )  and +l(t)  is small,  the 
phase  detector  output will be 

if we designate  the  phase  difference +2(t) -+l(t) as  
$ ( t ) .  If the  variations in A 1 and A 2 are  small,  as is  usu- 
ally  the  case,  they  may  be  neglected  and  the  phase  de- 
tector  output is essentially  the  difference  between  the 
instantaneous phases.  Both  signals  may  be  heterodyned 
down  to a convenient low frequency  by  means of two 
mixers and  a  common local oscillator.  Because  this 
phase  detector is linear  only  for  small  angles,  measure- 
ments  can  be  taken  only for time  intervals  during which 
the  phase  difference 4 ( t )  is  less than s /6 .  Within  this 
restriction,  the  phase  detector  output  may  be  analyzed 
by  a  low-frequency  narrow-band  wave  anal\rzer  to  esti- 
mate  the  spectral  density of the  phase SQ(w) directly. 
Alternatively,  an  rms  voltmeter  can  be used to  estimate 

Often i t  is  desirable  to  place  some  form of network a t  
the  phase  detector  output in order  to  have  the  voltmeter 
read ~ [ ( 4 ) ~ . ~ ]  directly. T o  find U [ ( Q ) ~ , ~ ]  exactly,  Fig. 2 
indicates  that  the  required  network is a  differentiator 
followed by  a filter  with  a  response 

[+(t) I. 

I H,(jW) 12 = 
sin? W T / ~  

(wr /2 )2  

Clearly,  the (sin x)/x response is difficult to  approximate 
with  a  simple  RLC  filter;  thus  it  is  appropriate  to 
discuss  two  other  filfers  that  might  be used as  sub- 
stitutes.  The first is a  simple  single-pole  low-pass  filter, 
with  a  frequency  response Hdcjw) equal  to 

The second is a  multiple-pole,  sharp-cutoff  filter  with 
response  approaching 

H e ( j u )  = 1, -wo < w < wo 

= 0 elsewhere 1 
Using Hd, the  corresponding  equations for the  vari- 
ances  are  as follows. 

1 D m  1 

Fig. 7.  Phase detector  system. 

Fig. 8. Frequency response of three filters. 

and using H ,  

Because the filter  characteristic of interest is I H ( j w )  1 2,  

the  squared  magnitude of response  for  each of the  three 
filters in question is plotted in Fig. 8. Because u2 is 
proportional  to  the  area  under  the  power  spectral  den- 
sity  curve,  the  three  characteristics in Fig. 8 have  been 
normalized to  have  the  same  area.  This  requires  that 
the  square filter,  (36),  have  a  bandwidth w o  = T / T .  

Figure 8 can nobv be used as  a  basis  for  comparing 
ad2 and ue2 with  the  true  variance 0 ~ [ ( 4 ) t , ~ ] .  First, all 
three  functions  have  the  same  area, so (Td2  and ue2 \vi11 be 
identical  to  the  true  variance if Si(o) is  flat  for  all  fre- 
quencies.  Second, all three  functions  have  about  the 
same  ordinates  for  small W T / 2 .  Thus,  the  variances 
measured  for  values of T that  make  the filters  much 
broader  than  the  spectrum of Si(w) will be about  the 
same for the  three filters.  Specifically, if Si(w)  is band- 
limited  to  frequencies below o,, then  the  values of 6 d 2  

and u,2 measured  for 7<<2/wC will again  agree closely 
with  the  true  value. 

Figure 8 indicates  that significant  divergence  in re- 
sults  can  be expected  when m / 2  is large. In  this  range, 

I Hdl still has  the  correct  general  behavior,  i.e., i t  varies 
as  l/w2, but  the  area is about  a  factor of two  larger  than 
is  required. On the  other  hand,  the He filter  bears no 
relation  to  the  required  (sin2 % ) / x 2  behavior.  Thus if 
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Si(w) is peaked at high  frequencies, we can  expect Ud? 
measured  for  large r to  be  about a  factor of two  larger 
than  the  true  value.  Under  the  same  conditions,  however, 
ue2 measured  for  large r can be  less than  the  true  value 
by  orders of magnitude,  depending on the specific  con- 
stants  involved. 

To  illustrate some of these  points,  the  example in 
Section  11-E  involving  a  flat  band-limited  phase  spec- 
trum  has been  reworked  using the Hd and He filters as  
approximations  to  the desired Ha filter. The  asymptotic 
results  for u2 are  as follows: 

I L# 

Filter 

I I 

I I 

These  results  are  consistent  with  the  preceding  general 
discussion. 

The  large r asymptotes for  these  cases  have  been 
added  to Fig.  3(d) to  facilitate  the  intercomparison 
among  the  filters.  Note  particularly in this  example 
that for large 7, a d 2  is a  factor of 2 large,  whereas  the 
calculation  based on He yields  a u> which varies  as 
instead of r 2 .  Thus u2 is  too  small,  i.e., optimistic,  by a 
factor  that  increases  linearly  with  averaging  time 7. 

We  conclude,  therefore,  that for calculating u ~ [ ( $ ) ~ , , ]  
the  simple  one-pole  low-pass  filter, (35) is a  reasonable 
approximation  to  the  required (sin x ) / %  filter, but  seri- 
ous  errors  may  be  introduced if a  sharp-cutoff  filter, 
(36), is used as  the  approximation. I t  is certainly  per- 
fectly  valid  to  place  a  sharp  filter a t   the   output  of the 
phase  detector  and  measure  the  rms  voltage  appearing 
a t   the  filter output  as  an  indirect  measurement of 
S;(w) (see,  for example, [7] ) .  The  error  appears when 
one  tries  to  identify  this  rms  voltage  with u [ ( $ ) ~ , ~ ] .  

C. Elapsed  Phase  Difference  Method 
Figure 9 shows  a  block  diagram of a  simple  elapsed 

phase  difference  measurement  system.  The  two  signals 
are  heterodyned  down  by  means of a  common local 
oscillator to  a  convenient low frequency  suitable  for  the 
resolver  phase  shifter. The  servo  system  maintains  the 
output  phase from the  phase  shifter in fixed relation  to 
the  phase in the  other  channel.  Consequently,  the  phase 
shift  introduced  by  the  phase  shifter is equal  to  the  rela- 
tive  phase  difference  in  the  two  channels. 

Since  the  relative  phase  is  preserved  in  the  heterodyn- 
ing  process, i t  is equal  to  the  relative  phase of the  two 
oscillators. The  phase  shift  may  be  read electrically by 

? R E I D O U l  
PHISE 

I 

RESOLVER 

osc  81 PHASE 
SHIFTER 

TYPE 
. : M I X E R  ~ = I 

7- -T- 
t I 

U U 

Fig. 9. Elapsed  phase method. 

an  optical  shaft encoder and  thus fed directly  to  com- 
putation devices. If the  phase is read a t  intervals of 
time 7 ,  this  technique  gives  an  estimate of A+$(t) and 
hence can  be used as  a basis of computation of ( $ ) t , r .  If 
the  oscillators  being  compared  operate a t  5 Mc/s  and 
the resolver  encoder  can  be  read to  0.005 of one  revolu- 
tion,  the  sensitivity  is 10-12 in ( $ ) t , r / w O ,  for  a r of 1000 
seconds. 

Because of the slow  speed of the  servo,  the high- 
frequency  components of the  spectrum  do  not  appear  at 
the  encoder  output.  Some of the  high-frequency  com- 
ponents  can  be  recovered  by  measuring  the  servo-error 
signal out of the  phase  detector,  provided  that a  suitable 
filter is added  to  compensate  for  the response of the 
servo  motor. 

As pointed  out  above,  the resolver  system is readily 
adaptable  to  digital  computation of oscillator  stability. 
One  such  method is to  calculate R,(r) from q5(t) as  pro- 
vided a t   the  encoder output,  and hence  calculate 
&(w)  and u [ ( $ ) ~ , ~ ] .  Typical  results  are  shown  in  Fig.  10 
[9]. The  phase difference  between  two  262-MHz  signals 
was  sampled  and  recorded  digitally on punched  tape 
every 10 seconds for about  ten  hours. -4 plot of the  sam- 
pled phase is shown in Fig.  lO(a). The  computer- 
generated  plot of the  autocorrelation of the  phase is 
shown  in  Fig.  10(b).  Although  the  calculation  was  made 
for  delay  times  as  large  as  10 000 seconds,  the  plot  has 
significant  error  (because of the finite data  length T )  
beyond  T/lO= 3500  seconds. 

To  conserve  computer  time,  the  power  spectral  den- 
sity of phase,  Fig.  lO(c),  was  calculated by  forming  the 
Fourier  transform of a 1000 point  sample of Fig.  lO(a). 
A  Hamming  routine was used to  smooth  the  resulting 
spectrum. (See Blackman  and  Tukey [ l ] . )  I n  spite  of 
the finite data  length, we assume  that  the  spectrum  thus 
obtained is approximately  the  true  power  spectral  den- 
sity  within  the  limitations discussed  in Section  11-F. 

The  curve of standard  deviation  vs.  averaging  time, 
Fig.  10(d),  was  formed  from  Fig.  10(b)  using  (16a). 

 



1966 CUTLER .4XD SEARLE:  FREQCENCY  FLUCTCATIOSS IS FREQUENCY  STAXDARDS 145 

30 

24 Id 

-24 1 w 'Y 

N 
I- 
U 
W 
I 
\ 
N 
cn z 
0 
9 
a 
U - 
3 

m 
Y 

e 

-30 1 I 1 1 I 1 I 1 
0 l0,ooO 20,000 30,000 0 2 4  6 8 IO 12 14 

TIME (SECONDS 1 FREQUENCY f (MILLIHERTZ) 

(a) (4 

r 

0.1 
I 

0 
W e fn n a 

* -20- - 
- 4 

.e A- 

- k 
b 

- g 0.01 7 

[L 

-40 

-60 

-00 - - 0.001 
0 2500 5000 7500 10,000 

' ' " ' I '  ' ' ' " ' . "  ' ' ' " " ' ' ' " " IJ 

i 1 1 I IO IO2 lo3 lo4 

DELAY TIME T (SECONDS) AVERAGING  TIME T (SECONDS) 

(b) (d) 
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difference. (c) Power spectral  density of phase. (d)  Standard deviation of average frequency. 

IV. SOISE IN OSCILLATORS 
Practical  oscillators  appear  to  have  three  main  sources 

of noise contributing  to  frequency  fluctuations.  These 
are:  A. additive noise associated  with  the  oscillator  and 
accessory  circuits,  such as  AGC  and amplifiers,  which 
does  not  perturb  the oscillation but  is merely  added  to  the 
signal; B. thermal  and  shot noise  in the  oscillator itself 
which actually  perturbs  the  oscillation;  and C. fluctua- 
tions  in  the  resonator  frequency  either  in  the  resonator 
itself or  due  to  circuit  parameter  changes influencing the 
resonance  frequency.  The  frequency  fluctuations of an 
oscillator due  to  the  last  mentioned source appear  to 
have   anf l  power  spectral  density [lo].  

-4. Additive  Noise 
In  oscillators  used  for quartz  frequency  standards, 

great  care is taken  to  couple  very  lightly  into  the 
oscillating  circuit,  and  because of the  nonlinearity of the 
resonator [ l l ]  it  is  necessary  to  stabilize  the  oscillation 
a t  a  very low power  level (typically  about 10-7-10-6 
watts).  The  nonlinearity  causes a coefficient of about 
1 X per d B  of drive at 50 p A  in a 2.5-Mc/s  fifth 

overtone  crystal [12]. As a  consequence, the noise of the 
amplifiers  following the oscillator  is the  predominant 
factor  for  fluctuations  involving  times of the  order of 
0.1 second  or less. 

Assume that  the  additive noise  is band  limited  by  a 
narrow-band  filter  with  transfer  function 

1 
H ( w )  'V 

w - wg (39) 
1 +j- 

a1 

where w1 is the half bandwidth of the filter. As will be 
shown,  this is often  a  desirable  procedure.  Such a trans- 
fer  function, of course,  is  not  realizable but  is a good 
approximation  for  the  narrow-band case. Assume  also 
that  the  additive noise is white  and  has  a power  spec- 
tral  density So. Then  the power  spectral  density of the 
noise out of the filter will be 

so 

1 + 
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The  total noise  power will be 

If the  total signal  power P s  is  large  in  comparison  to P.v 
so PN/PS<<l then  it is well known that  half the noise 
power  appears  as  amplitude  modulation  sidebands  on 
the  signal  centered in the noise and  the  other half as  
phase  modulation  sidebands.  The  power  spectral  den- 
sity of this effective  phase  modulation is then 

and  the  autocorrelation  function is 

From  this,  using (16a), 

(for  a  single  filter). A normalized  plot of the  asymptotes 
of this  function is shown  in  Fig. 11. For wlr>>l, 

wo 0 0 7  

for wlr<<l, 

For olr>>l, u/wo is proportional  to  for  constant 
noise spectral  density  and  for w1~<<1 i t  is proportional 
to w1. Consequently,  using  a  narrow-band  filter  can 
greatly  improve  short-term  stability.  For  two  cascaded 
filters  each of half-bandwidth w1 the  result  is 

(for  a  double  filter). 

In  this  case u is  constant  for WT<<~. For  any  shape of 
band-pass  filter  with  white  additive noise 

when T is much  greater  than  the reciprocal half band- 
width. 

As a practical  example,  consider  a  5-Mc/s  oscillator 
followed by a single  filter of half bandwidth of 62.5 
c/s  and PN/Ps  = -87 dB.  Then  for T =  1 second, 
U ( ( $ ) ) ~ , ~ ) / ~ O =  1.4X1O-l2. For a comparison  with  ex- 
perimental  results  see  Figs. 6 and 12. 

Fig. 1 1 .  Normalized additive noise contributions. 
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Fig. 12. Theoretical and experimental standard deviation of average 
fractional frequency departure for a 5.0-Mcls precision quartz 
oscillator. 

B. Noise that Perturbs the Oscillation 

The  perturbing effects of thermal  and  shot noise  in 
oscillators  are well known [13]. The  phase  does a 
random  walk  due  to  the  perturbations.  It  has  been 
shown that  this  leads  to 

-=(E) d ( d ) f , r )  112 (45) 
0 0  2 PQ2r 

where 

k = Boltzmann's  constant 
T = the  effective noise temperature 
P = the  total power  delivered to  the  resonator  and 

Q = the  loaded Q of the  resonator. 
the  load,  and 

As an  example con8ider  a  S-Mc/s  oscillator  with 
Q= 2 x lo6, P = 10-7 watts,  and T =  loso K. For T =  1 
second u((d) f , r ) /u l l  = 1.3 X From  this  example  and 
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the  previous  one,  it is apparent  that  the  additive noise 
will dominate  over  perturbation noise  for short  averag- 
ing times in precision crystal  oscillators.  Here the 
effects of the  two  sources of noise  would  become equal 
at  an  averaging  time of about 100  seconds  with  a  total 
fluctuation of about 2 X1014 if no other  sources  were 
effective. For  times  longer  than  100  seconds,  the  per- 
turbation  type noise  would dominate. 

C. f-' Noise 
The  third  main  source of noise  is tha t  which has  an 

f-I power  spectral  density of frequency  fluctuation,  i.e., 
Sd(w) = K / / w l ,  K a  constant.  In  addition  to  this, oscil- 
lators  drift in frequency  (drift is usually  accompanied 
by  an f-l power  spectral  density).  Because of the  drift in 
frequency,  the  phase  is  not  a  stationary  process.  Also, 
since an f-l power  spectral  density  for  frequency  fluctua- 
tions  corresponds  to S+(w) proportional  to 1 0 1  -3 ,  

1 "  

lrr2 --p 

c T 2 ( ( i ) t . r )  = - J S+(w)(l - cos or) dw 

[from  (16a)  with  the  autocorrelation  functions  written 
in terms of S+(w) using (lS)]  does  not  converge  since 
1 -cos UT only goes to zero as  w2 for w approaching  zero. 
This is not  surprising. If the f-' spectrum  persisted  down 
to  zero  frequency we would  see  infinitely large  fluctua- 
tions  by  observing  over all time. 

In  the  actual  situation  observations  are  made  over  a 
finite time T .  If the  frequency  drift is removed  during 
the  time T by  subtraction of the  least  squares fit of a 
straight line, this  behaves  like  a  high-pass  filter  acting 
on the low-frequency  components of the  phase (see 
Appendix 11). The  output of this  filter goes to  zero as  
w 2  for w approaching  zero,  and  the  filter  starts  to  cut off 
a t  wrv2IT. This  gives  finite  results for ~ ( ( d ) ~ , , ) / w ~  as  
shown  in  Appendix 11. I t  is apparent  from  the  functional 
form of the  integral  that if the  ratio of observing  time  to 
averaging  time T / r  is constant (corresponding to  a fixed 
number of samples)  then U ( ( Q ) ~ , ~ ) / W ~  is constant. Since 
there is no theory  giving  the  strength of thef-'-spectral 
density, no prediction  can  be  made  as  to  theconstant 
value of u .  The  dependence of u2 on T / r  is proportional 
to  1.04+3 log T/2r .  

Actual  oscillators  measured  under  the  conditions of 
finite T and  removal of drift  exhibit  the  predicted  be- 
haviof (see  Figs.  6 and 1 2 ) .  For T / r  of about 100, 
u ( ( ~ $ ) , , ~ ) / w o  flattens  out  at  a  value  somewhat  greater 
than  1 x 10-l2. Since  this is larger  than  the  fluctuations 
due  to  the  perturbing  type of noise at the r for  which 
additive noise  becomes dominant, i t  is apparent  that  the 
effects of the  perturbing  type of noise are  not seen a t  all 
in many  frequency  standards.  Figure  13  shows  the 
effects due  to  the  three  sources of fluctuations. 

J .  Barnes  [I41 of the  NBS  Laboratories,  Boulder, 
Colo., has  recently  shown  that  taking successive  differ- 
ences of the  phase  has  interesting consequences. For 
example,  taking  second  differences  removes the  linear 
frequency  drift  and  also  gives  convergent  results  inde- 
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Fig. 13. Contributions  to oscillator fluctuations. 

pendent of observation  time  for  an  assumed f-'-power 
spectrum. -4s shown  in  Appendix  I 

1 
[6R+(O) - 8R+(s) + 2R+(2~)]"' (46) 

where Ar24((t) =4(t+r) - 24(t) +4(t -7) is the second 
phase difference.  Using this on an f-'-power spectral 
density of frequency  fluctuations, S+(w) = K /  1 wI I ,  gives 

(8K log 2 ) 1 / 2  
u =  (47) 

WO 

Since  this  is  independent of observation  time T ,  it  ap- 
pears  to  be a good measure  for the f-l characteristic of 
oscillators. 

D. Noise in Masers  
I t  is interesting  to  compute  the effects of the  perturb- 

ing  thermal noise and  additive noise  in maser  oscillators. 
Following  Kleppner et  al.  [IS],  [16],  but solving the 
first-order  perturbation  exactly  and  correcting  the 
thermal noise  expression [17 1 gives  a total  spectral  den- 
sity of phase  (two-sided)  for  a  hydrogen  maser, 

Here 
k = Boltzmann's  constant 
T = absolute  temperature 
P =power  delivered  by  the  beam  to  the loaded 

Qe =external  cavity Q 

QL = atomic  line  Q =00/2y, and 

cavity 

Qc, l  =loaded  cavity Q 

G,(w) = C O ~ ~ / ( ~ ~ + ~ I ~ ) ,  the  equivalent low-pass  mag- 
nitude  squared  impedance  function of the 
cavity,  where  ol=w0/(2Qc,t). 
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In  deriving (48) i t  is  assumed that  the  maser is coupled 
to  its load  through  an  isolator in thermal  equilibrium 
with  the  cavity  and  consequently  the  available  signal 
power  is  Po=P(Q,,i/Q,)  and  the  available noise  power 
spectral  density is just  (kT)/2.  The  first  term  in (48) is 
just  the  additive noise (white  phase noise) and  the sec- 
ond  term  (low-pass  filtered  white  frequency  noise)  arises 
from  the  perturbation of the  oscillation.  Note  that  for 
w> (WO/QI)(Q, ,~/Q~)~/~,   the   addi t ive noise predominates. 
I t  is  interesting  to  note  that  a  portion of the  additive 
noise term is actually  present  in  the  solution  to  the 
maser  signal in the  cavity  [17].  This  is  similar  to  results 
obtained  by  Hafner  [I81  for  an  oscillator  with  two 
coupled  tuned  circuits. 

The  corresponding  result  for  the  rubidium  maser  has 
not  yet  been  derived,  but  the  mechanism of operation is 
very  similar so that  the  result  is  probably  the  same-ex- 
cept  that P should  be  replaced  by  the  power  delivered 
to  the loaded  cavity  by  the  rubidium  atoms.  We will 
assume  here  that  the  results  are  valid  for  the  rubidium 
maser. 

Since  the  additive  white  phase noise term  in (48) is 
very  broadband,  most  applications  involving  the  maser 
will require  that  the  bandwidth of the  output  be  re- 
stricted. If the  system  has  an effective  single  tuned 
bandpass  characteristic of width 2w1’ with w1’<<w1, and  a 
noise factor F (referred  to  the  maser  input  port), we 
obtain 

For o~’T>>~ this  reduces to 
112 

(SO)  
wo 

which  is  similar  in  form to  that  obtained  earlier b?. 
Vessot [ 191. 

For uI’/w~<<wI’~<<l, 

Note  that  the  perturbing noise term  in (50) is exactly 
the  same  for  a  maser  as  that  for  an  ordinary  oscillator 

[see (45)].  For T <  Fw1’Q?Q,/w02Qc.l (if w i ~ > > 1 )  or 
r < ~ F w ~ ’ Q ? Q , / w o ~ Q , , ~  (if w1’7<<1) the  fluctuations  due 
to  the  additive noise dominate.  For  a  hydrogen  maser 
with  Q1=2x109,  Qe/Qc,l=5, F=2, and  wl’=60  the 
additive noise dominates  for r <30 seconds.  For a 
rubidium  maser  with QI=  1 X106 [20] and  all  other 
factors  the  same,  the  additive noise dominates  for 
r <6.5X10-3  seconds  (here WI’T< 1).  Figure 14 is a  plot 
of the  theoretical U ( ( & ) ~ , ~ ) / U O  vs.  averaging  time  for a 
hydrogen  and  a  rubidium  maser.  Note  again  the  influ- 
ence of the  narrow  filter on the  results. 

The  factors in the  two  terms of ~ ( ( & ) ~ , ~ ) / w ~  that  de- 
pend  only on the  maser  may  be collected into  figures of 
mert M A  and M p ,  allowing u to  be  written  as 

~ ( ( c $ ) t , , )  FWI’ 
~ - { [ (1 - e-w1 ’7 )  

wo 
- -- 

2 M A 2 ?  

where 

Some  typical  figures of merit  are  given in Table  I.   The 
figures  for quartz  assume  fairly  tight  coupling  to  the 
load to  obtain a large M A .  This  is  what would be  needed 

i 

10-6 
10-4 10 ’2  IO2 IO 

Fig. 14. Theoretical standard deviation of average  fractional 
frequency departure for hydrogen and rubidium masers. 
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TABLE I 
CHARACTERISTICS AND FIGURES OF MERIT OF VARIOUS OSCILLATORS 

Type of Oscillator 

1 . 4 X l W  3.1X10’  1x10-6 1 2x100 ~ ~ 2000 Quartz (5 Mc/s) 

4x101 2000 5 1 x 10-12 Hydrogen 

1.9X106 loo0 5 1 XlG* 1 x 10-10 4.3X1010 Rubidium, 87 

6.7X10’ 50 5 5x10 ’  1 x 10-10 1 . 5 x  10’0 Ammonia 

Seconds-’ M-wattsl’z Q,/Q~.I Q 1  wo-Seconds-l I P-watts 
MA-watt3’2 



for an  oscillator  servoed by  a  short  time  constant  loop 
to  an  atomic  device  but  contrary  to  the  requirements 
for  good long-term  stability  and  freedom  from  circuit 
influences  in  a  free running oscillator. 

I t  is very likely that  masers  also  exhibit  an f-I power 
spectral  density of frequency  fluctuation.  This  is  due  to 
the  fact  that  the  frequency is dependent on many ex- 
ternal  factors  that  may  have  an f-’ spectral  density 
such  as  cavity  tuning (all masers),  magnetic field (hy- 
drogen  and  rubidium),  buffer  gas  pressure  and  tempera- 
ture  and  light  intensity  (rubidium),  and wall shift 
(hydrogen).  Allan  [6]  has  reported  one  case  where  an 
f-’ spectral  density  was  observed  for  an  ammonia  maser 
with  some  uncertainty  in  the  data.  Not  many experi- 
ments  have been  performed as  yet,  partially  because of 
the  long  times  necessary to  gather reliable data  and 
also  because  the field is quite new. This is an  interesting 
area for future  research. 

V. FLI-CTL-ATIONS IN ATOMIC STANDARDS USING A 

SERVO-CONTROLLED  QUARTZ  OSCILLATOR 

A .  Atomic Beam Device 
Consider  an  oscillator  compared  against  a  reference 

such  as  an  atomic  beam  device [21]  and  controlled  in 
frequency  by  a  servo  actuated  by  the  error signal. 
Figure  15  shows  a  system  block  diagram.  The power 
spectral  density of the  fluctuations  in  the  output fre- 
quency is 

where S~(w)oSc  refers to  the  open loop  fluctuations  in  the 
oscillator, S;(W)R~~ refers  to  the  equivalent  frequency 
fluctuations  in  the  reference,  and G(w) is the  total loop 
gain KoKRg(w). In  deriving (53) i t  is assumed  that  the 
system  is  linear  and  that  the  two noise sources  are  un- 
correlated.  The  simplest useful  form  for G(w) (also  a 
very  practical  one) is 

- eucr&i(--wcr))”2 (56) 

n-here B is a  constant  depending on the  strength of the 
f-’ noise ; y = 0.5 7 7 is Euler’s  constant ; 

x e’ 
t 

is the  exponential  integral ; and &i*(X)  is the  principal 
value of the  integral for X>O. This  behaves  like 
( ~ / w o )  [ 5 / 2  -7 -log (u,T) 1112 (very slowly varying)  for 
w , ~ < < 1  and like (B/(oow,r)) [2 log ( w , ~ ) + 2 y ] ~ / ~  for 
wcr>>l. 

The  contribution  due  to  the reference  noise,  which is 
assumed  to  be  white  with  power  spectral  density SR,  is 
[from ( 5 5 )  and  (17a)l 

& i ( X )  = J-, -&, x < 0, 

This  approaches  a  constant  value of (l/wo) ( S ~ w , / 2 ) ~ ’ ~  for 
w , ~ < < l .  Forw,~>>l ,  U = ( ~ / W O ) ( S R / T ) U ~  (thisholdsforany 
G(o) such that  1 G(w)/(l +G(w)) I 2--tl as w+O for W,T 

>>1). Figure  16  shows the  behavior of the  various con- 
tributions  to  the overall  fluctuations. I t  is apparent  that 
there is an  optimum choice of loop cutoff 0, for  a 
given  oscillator and  beam  tube. 

I t  is of interest  to  calculate  the power spectral  density 

i i 

which  is just gain and  integration.  This  is  a good ap- 
proximation  to  what  is  done  in  practice.  Substituting, 
(53) becomes 

w2 
Si(W)O = S i ( W ) O s e  ____ + Si (w)Ref  ~ ( 5 5 )  

w2 + Wc2 0 2  + We2 

WC2 

so that   the  oscillator  noise  is  high-pass  filtered  and the 
reference  noise is low-pass  filtered. 

Consider  first  the  fluctuations  due  to  the  oscillator 
only. If i t  is assumed  to  have  characteristics  similar  to 
those  previously  discussed,  namely  additive noise  filtered 
by  a  narrow-band filter of half width 01, and  an f-I be- 
havior,  then, if wl>>wc (as is usually  the  case),  the  addi- 
tive noise contribution is  virtually  unchanged  by  the 
servo  loop. The  f-I portion  gives, in the closed  loop 
condition,  [from ( 5 5 )  and  (17a)l 

L O G  T 

Fig. 16. Contributions to passive atomic standard fluctuations. 
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of the noise  for the  case of a  cesium  beam  reference.  For 
Ramsey  excitation  the  response  may  be  written  for 
small departures from  line  center  approximately  as 

I ( t )  = (1 + cos A (?)} 
2 

where I ( t )  is the  output  current which has a maximum 
value I,, Aw(t)  is the  departure from  line center,  and w i  
is the full  line width.  Let A w ( t ) / w l = ~ + a  cos w,t to 
allow  for the usual  sinusoidal  modulation,  where urn is 
the  modulation  frequency  assumed  small in comparison 
with so that  the  dynamic  behavior is essentially  the 
same  as  the  static  behavior.  The  result of synchronous 
detection of this  signal is 

- (1 + cos A ( €  + a cos w d ) )  cos w,t df 

sin ue -ImJl(*a) 
= - ImJ1(7ra) - - EA (59) 

2 2 
- 

for E small. For a  given  offset, E ,  this  has  the  maximum 
absolute  value of 0.91 e l ,  with TCY= 1.8, the first  maxi- 
mum of the Bessel function.  This  represents  the  signal 
output for  a  given  fractional  mistuning E .  

In a  beam  tube,  the noise is mainly  due  to  shot noise 
and so the power spectral  density is proportional  to 
I(t)'12 and is  independent of w.  Since I ( t )  is a  function 
of time,  the noise output is not a stationary  function. 
If i,(t) is the  instantaneous noise current  with no 
modulation  and E = O  then 

The  autocorrelation  function  after  synchronous  detec- 
tion  is  desired.  Performing  the  statistical  and  the  time 
averages  gives 

Rr(7) = 8 ( 7 )  - (1 + J o ( 4  - Jz(?Ta)) (61) 
SI 

4 

where SI is the  spectral  density of the noise current. 
From  this  and (59) the  spectral  density SR is 

S r [ l  + Jo(7ra) - Jz(*a)Iw? 

.T12(7ra) I m W  
SR = (62) 

where SI is the  spectral  density of the noise current, I , 
is the  peak  signal  current,  and CY= ( A W / W I ) , , , ~ ~  is the 
ratio of peak  frequency  swing due  to  the  modulation 
to   the full  line width, w I .  Using these  results  and  assum- 
ing optimum  modulation  amplitude, 

for  averaging  time 7 long in comparison  with  the  loop 
time  constant, where I ,  is the noise current from the 
beam  tube in a 1-c/s noise bandwidth  centered  about 
the  modulation  frequency; f l / f ~  =wr/wo.  

B. Maser  with Phase-Locked Oscillator 
Essentially  the  same  sort of analysis  that  was  applied 

to   an oscillator  slaved to a passive  atomic  device  may 
be used  for an oscillator  phase-locked to  a  maser. A 
block  diagram of a  simple  system  with  the  various  im- 
portant noise sources is shown  in  Fig. 17. Again we have 

where 

(see Fig. 17). 

As  before, the oscillator  noise is high-pass  filtered  and 
the reference  noise is low-pass  filtered. Great  care  must 
be exercised  in the design of the  frequency  multiplier, 
receiver, and  synthesizer so that  their  frequency power 
spectral  densities  within  the  loop  bandwidth  are  as 
small as  possible. Solid-state  frequency  multipliers  (and 
amplifiers) are  often  plagued  with  an f-1 power  spectral 
density of phase  which  frequently  can  be  due  to f-' 
noise in biasing  or  collector  voltage  supplies.  For  this 
type of application  temperature  control of the fre- 
quency  multiplier  is  desirable to remove slo\\r phase 
drifts  with  temperature  change. 

As an  example of a  possible  design,  consider  locking 
a  relatively  high  level,  tightly  coupled  lO-l\lc/s  quartz 
oscillator to  a hydrogen  maser.  Reasonable  estimates 
for  the  various  pertinent  quantities  are  (hydrogen maser 
parameters  same  as in Table I-see also  Fig. 17) : 

Pose = watts, 

woSc = 6.3 X lo7 second-', 

N = 140, 

2 x 1 0 - 5  
S i ( w ) o s 0  = lO-'*wZ + , , , and 

I t  is assumed  that  the oscillator has  an f-'-frequency 
spectrum  plus  white  phase noise and  that  thef-'  portion 
leads  to a ~ ( ( & ) ) ~ , , ) / w ~ ~ l O - ~ ~  for   T /~ 'v l00 .   The  refer- 
ence  spectral  density is assumed  to  be  due  mainly  to  the 
additive noise caused  by  the  preamp  and mixer  (white 
phase noise) and  the  random walk term  in  the  maser. 
Thef-'  spectral  density in the  maser is neglected,  since 
presently  not  much is known  about  its  magnitude  (as- 
suming  it  exists). 

In  order  to  reduce  the effects of oscillator drift  and 
the f-' spectral  density, i t  is desirable  to use  a phase- 
lock  loop with  two poles a t   the  origin and a  zero a t  UP, i.e., 

G(w) = 
2iwzw + wz? 

- W2 

The  phase  detector  provides  one  pole,  and  the  other 
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Fig. 17.  Block diagram of an active  atomic standard 
with phase-locked quartz oscillator. 

pole and  the zero may  be  approximated  very well with 
an  operational  amplifier  with  feedback.  The  loop will 
be  critically  damped  with  this  choice of G ( w ) ,  and w2 

determines  the loop  cutoff frequency w c :  i.e., w c = 2 . 0 6  
up. With  this  loop,  a  constant  drift  rate  in  theoscillator 
produces no frequency  error. 

The  loop  cutoff frequency  in  this  example  is  optimum 
at  the  point  where  the f-’ spectral  density  from  the 
oscillator  equals the  white  phase noise term from the 
reference. This  occurs a t  -215 seconds-’ or f ~ 3 4  c/s. 

The  additive noise contribution  from  the  oscillators 
must  be  smaller  than  that from the  reference;  otherwise, 
the  optimum loop  cutoff frequency would be  very  large. 
This is the reason  for  using  a  fairly  high  drive  level, 
high-frequency  oscillator.  Again,  careful  use of narrow- 
band  filtering of the oscillator  can  be of great  value. 
Excessive  narrow-band  filtering  may  violate  servo-sta- 
bility  requirements. 

VI. CONCLUSIONS 
Some of the  considerations of the  theory  and  measure- 

ment of fluctuations  in  frequency  standards  have  been 
presented. I t  was  shown  that  the  fluctuations could be 
characterized  by  the  autocorrelation  function of either 
frequency  or  phase  or  the  power  spectral  density of 
either  frequency  or  phase.  From  these  the  many 
measures of stability  may  be  computed. IMeasurement 
techniques were  discussed as  well as  the  techniques  for 
estimating  spectral  densities,  etc.  Sources of fluctuations 
in quartz oscillators,  passive atomic  standards,  and 
masers were treated  and  some  of  the  theory  presented. 
In  some cases,  details  have  been  lightly  treated  or 
omitted  due  to  the  length of the  material  presented. I t  
is hoped that  the  material covered will be  useful  in 
promoting  understanding  and  guiding  designs. 

APPENDIX I 
If  +(t) is  wide-sense stationary  and  has zero  mean 

b2(Ar+(l))  = (+(t 7/21 - $(l - 7/2))’ 

= +(t + 7 /2 ) ’  - 2+(t + 7/2)+(t  - 7/2) 

+ +(t - ~ / 2 ) ~  = 2(R+(O) - R+(T))  (64) 

which leads  to (16a)  in the  text, since u ~ ( ( $ ) ~ , , )  
= (1/T2)u’(A,$(T)). 

L T ~ ( ( $ ) ~ , ~ )  = s ”’ dt‘ s dt” $(t’)$(t”) 
r2 -rJ2 -712 

- - A s  ‘12 dt‘ s r’2 dt”Ri(t” - t ’ ) .  (65) 

Let (t” - t ’ )  =r ’ .  Using this  substitution  and  inter- 
changing  the  order of integration  gives 

T 2  -712 -712 

which  gives (16b). 
The second  phase  difference AI‘+(t) is [ + ( t + ~ )  -+(t)] 

- [+(t) -+(t-7)] Or 4 ( t + T )  -24(t) ++(t -T) .  

~ ‘ (& ‘+ ( t ) )  = (+(t + 7 )  - 2+(t) +(t - 
= 6R+(0) - 8R+(7) + 2R+(27) (67) 

leading  to  (46). 

APPENDIX I1 

Assume  that  a signal o(t)  is observed  for a time T ,  
and it is  desired to  remove  the  mean  and  the  linear 
drift  in a least  square  departure  sense.  This  requires  that 

(v( t )  - (a  + b t ) )2  dt = minimum. (68) 
ST:: 

For  this  to  be satisfied 
1 T I 2  

T -T/2 
a = -J v( t )  dt, 

b = “ S T / ’  tv(t)  dt. 
-TI2  

Consider the  Fourier  transform of 

v ’ ( t )  = o(t) - ( a  + bt),   I t1 T/2 
= 0, It1 > T/2 

T / 2  

~ ( w )  = J’,,, zl’(t)e-jor dt. (70) 

Expanding  the kernel  gives an  approximation  to 
V’(w) for wT/2  < 1 : 

V’(w) = J T/2v’(t)  (1 - jwt - - + * * * 

W2t2 ) dt 
-TI2 2 

W2tZ 
2 

1 - j u t  - -+ . . . ) dt. (71) 
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If the  integrals  that  can  be  done  are  carried  out  and  the 
values of a and b substituted, it will be  seen that  V’(w) 
has  neither  a  constant  term  nor  a  term  linear in w .  Also 
the  transform of a+bt goes to zero  rapidly  for 0>>2/T. 
Thus,  sampling for time T and  removing  the  mean  and 
the  linear  drift is quite  similar  to passing v ( t )  through  a 
high-pass  filter  with  two  zeros,  cutting off a t   about  
w =2,/T. Another  way  to  show  this is to consider the 
minimization of 

1 “  T I 2  
2, J-“ I V ’ b )  I dw = J - T 1 2 ( v w ) ~  dt ( 7 2 )  

the  equality  holding  because of Parseval’s  Theorem. 
Adjusting  the  parameters a and b for  minimum  total 
energy is really  removing  the  maximum  amount of 
energy possible  in the  band of frequencies  occupied  by 
the  transform of a+&. Since  this  transform  has  a half 
width of the  order of 2 / T ,  the whole  process is quite 
similar to  the  high-pass filter  mentioned  earlier.  Sub- 
tracting  a  second-order  and  third-order  term  in t would 
about  double  the cutoff frequency. 

We  may  obtain  the  corresponding  general  result  for 
subtraction of an  Nth  order  polynomial, g N ( t ) ,  from 
v(t) .  For 

s ( v ( t )  - g d t ) ) 2 d t  
T I 2  

-T,? 

to be  a  minimum n.e may  let 

n=O 

where P,(x)  is the  Legendre  polynomial of the first 
kind  and a ,  is a  constant  to  be  determined.  (N= 1 is the 
linear  regression case  considered  earlier.)  This follows 
from the  mean  square  approximation  property of or- 
thonormal  sets of functions: Pn(2t /T)  is the  ortho- 
normal  set of polynomials  for  the  interval I t I  < T / 2  
with  weight  function  unity.  In  the  usual  way we find 

T I 2  

a, = ~ 2n + v(t)Pn(2t/T)dt 
T s-T/!2 

where e(t) = v ( t )  for 1 t i  < T / 2  and 6( t )  = 0 for I t I  > T/2 .  
Consider  the  Fourier  transform, ~ x ( w ) ,  of &v(t) 

where g N ( t )  = g N ( t )  for 1 tI < T / 2  and j . ~ ( t )  = O  for 

n=0 5 On J T1>n(2t/T)e-jufdt 
-TI2  

where j , ( x )  is the spherical Bessel function of the first 
kind.  We  may  express  the coefficient a ,  in terms of 
P(w),  the  Fourier  transform of e(t) : 

where d/dw is the differential  operator  and  the  expres- 
sion is evaluated a t  w = 0 after  the  differentiations  are 
performed. We find,  using the expansions  for the Bessel 
functions,  that  as 

W T / 2  + 0 

&w) --+ P(0) + wP(0)  + - P’(0) + ~ 

w 2  2 ( P ( o ) T 2 )  12 l 

and for wT/2>>1, ~ , v ( w )  =O. Thus, if go(t) (the  average 
value of 6 ( t )  is subtracted  from d ( t ) ,  the  transform of the 
difference has a single  zero a t  w = 0, and  subtraction of 
g l ( t )  (linear  regression)  gives  two  zeros. Note  that  sub- 
traction of higher  order  terms  such  as gz(t) does  not 
introduce  more zeros.  Also, since 6.,:(w)+O for wT/2>>1, 
the  transform of d ( t )  - b ~ ( t )  is just V ( W )  for  large W T / 2 .  
This  again  demonstrates  the  high-pass  filtering  action. 

The  next  consideration is to  calculate  the  average of 
the  estimates  ofsthe  variance  for  a  signal v ( t )  observed 
for  only  a  finite  time T .  I t  is assumed  that o( t )  repre- 
sents  a  stationary ergodic  process and  has zero  mean. 
The  variance is 

1 “  

27r -= 
,,yz1) = v(t)’ = (02) = ~ ~ ( 0 )  = - s S&) dw. (73) 

The  estimate of the  variance  over  time T is 

The  average  value of the  estimate  variance is 
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(The  bar  here  means  either  statistical  or  time  average.) 
Thus,  the  average of the  estimated  variance is the  same 
as  the  true  variance  except for the  factor 

in the  integrand.  For wT/2<<1, this  factor  is  approxi- 
mately  1/3 ( W T / ~ ) ~  and for wT/2>>1, the  factor goes to 
1 .  Here  again  is  the  high-pass  filtering  action,  the  filter 
cutting off at w=2/T. 

If v( t )  is taken  to be 

J t-712 7 

corresponding t o  averaging the  frequency  over  time T 

and observing i t  for  time T ,  

since 

which may  be  shown  either  by  direct  calculation of the 
Fourier  transform of the  autocorrelation  function of 

( 6 ) l , T = ( ~ [ t + ( 7 / 2 ) l - - [ [ t - ( T / 2 ) ] ) / T  

and  using the  relation Si(w)  =Si(w)/w2 or  by  the  method 
used  in the  text following ( 2 2 ) .  T--7 appears in  place of 
T in (76), since  only T--7 is  available  for  averaging. 
Note  that  since  the  factor 

[l - s ~ ~ ~ w ( T - T ) / ~ / ( w ( T - T ) / ~ ) ~ ]  

goes to  zero as  w 2 ,  the  integral will be  convergent for an 
, f - l  behavior of Si(w). I f  ( Q ) t , r  is taken  to  be a  discrete 
variable  (as is usually  done in the  actual  measurements) 
the  average of the  estimated  variance will be [6], [14] 

sin2 w r / 2  

sin2 Nw-7/2 - 
( N w / 2 l 2  

dw (77) 

which  is very  similar  to (76). Here,  instead of using  a 
continuous  average  over T to  compute u, the  average is 
over N discrete  consecutive  samples of ( + ) t , r  each 
spaced  time 7 apart  so that  NT corresponds  to T in the 
continuous  case.  For  a  detailed  discussion of the dis- 
crete  variable  formulation  see  Allan [6] and  Barnes  [14]. 

The  bar  over in (75 ) ,  (76), etc.  implies  averaging 
over a number of periods of time of length (T -T )  to  
obtain  the  average of k2. This is  necessary  since b is 
really  a  statistical  variable  and  has  its own variance 
111. 

Usually T>>T in (76) and  the  spectral  density will be 
fairly  smooth so that  if (76) converges  the  high-pass 
filter  action may be  approximated  by  a  low-frequency 
cutoff on the  integral.  Thus 

Let  us now  calculate  the  fluctuation  expected  in a 
finite  time of observation of an oscillator  with an f-l 
power spectral  density of frequency.  Assume 

K 
Sg(w) = - I 4  

so that  

K 
S&) = - I @ l a  

If the oscillator  were  observed  for an infinite time 

which of course  does  not  converge. If we cut off the 
integral at the lower limit 2 / T  corresponding  to (78) 

2K 1 - COSWT 2Kr2 1 - cosx 
u2 = w 3  

dw = - 
X S Z r / T  x' 

d x .  

For  constant T / T  the  integral is  a constant  and u2 = R2, 
C a constant.  Then, we have 

To  get  the  dependence  on T / T  we can  estimate  the  in- 
tegration.  (The  integral  can  be  done  exactly  in  terms of 
the cosine  integral.) 

wo2 
-- d x  = 

So for T/2-7>>1 ~ * ( ( 6 ) ) ~ , ~ ) / ~ 0 ~  is  proportional  to log 

The  problem of spectral  density  estimation  from  data 
over a finite  time is well covered  in the  literature [ l] ,  
[ 2 2 ] .  For  the  relatively  high-frequency  portions,  say 

w >  20, analysis of the signal  representing +(t) or 4(t) by 
the usual  narrow-band  and  tunable  filter is simple  and 
useful if the resolution  required is not  too  great.  The 
techniques of carrier  cancellation  and  sideband  exalta- 
tion  by using  a  dispersive  bridge or a  nondispersive 
delay line are  also  extremely useful [ 2 3 ] ,  [24] .3  

(T/2T).  

8 Several papers and correspondence items in this issue contain 
material pertaining to these types of measurements. 
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For lower  frequencies i t  is  usually  necessary to   do  the 
spectral  analysis  from  the  time  data.  One  technique is 
to  compute  an  approximate  autocorrelation  function, 
modify it  with  a  time window (Hanning,  Hamming,  or 
other [l]), D ( T ) ,  which is symmetric  about T = 0 ,  equals 
1 for T =0,  and goes smoothly  to  zero  and  then  stays 
zero for some T <  T ,  where T is the  total  time  duration 
of the  data.  Then  the  Fourier  transform of this  modi- 
fied autocorrelation  function is computed  to  get  the 
estimate of the  spectral  density.  One  can  then  show 
that  if s ( w )  is an  estimate of the  spectral  density  com- 
puted  in  this  way  then s ( w )  = S ( w )  @Q(w) where S ( w )  
is the  true  spectral  density, @ signifies convolution,  the 
bar signifies the  statistical  average,  and Q(w) is the 
Fourier  transform of the  time window. The  variance of 
S(w)  depends on the  shape of the  time window as  well as  
the  ratio of the  length (in time) of the  time window to  
the  total  length  in  time of the  data.  For small  ratios  the 
variance  is  small,  but  the  smearing of the  spectrum  due 
to  the  consequently wide Q(w) is appreciable.  For  any 
given  length of data,  therefore,  there is some  variance 
and  some  smearing.  The  time window represented  by 
(24) is 

Since this  time  window is as wide as is  possible  from the 
data  length,  the  variance of s ( w )  will be  fairly  large. 
As pointed  out in Blackman  and  Tukey [l],  i t  is wise 
to  remove  the  mean  and  the  linear  drift before attempt- 
ing  spectral  analysis  via  the  autocorrelation  function 
route. 

Low-frequency  analysis  can  also  be  done  by  observ- 
ing the slope of ~((r j )~, . ) /uO,  or  by successive  differences 
of phase  [14],  or  by  observing 

1 “  
~ % ’ b ) ) m  = ,J-W 1 w w ,  4 I*& 

as  a function of the cutoff frequency w ,  of a  low-pass 
filter H(w, w , )  through which the signal  representing 
Si(@)  is passed [2S]. 
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