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Abstract

Given a multiset ofn positive integers, the NP-complete
problem of number partitioning is to assign each integer to
one of k subsets, such that the largest sum of the integers
assigned to any subset is minimized. Last year, three differ-
ent papers on optimally solving this problem appeared in the
literature, two from the first two authors, and one from the
third author. We resolve here competing claims of these pa-
pers, showing that different algorithms work best for differ-
ent values ofn andk, with orders of magnitude differences in
their performance. We combine the best ideas from both ap-
proaches into a new algorithm, called sequential number par-
titioning, and also introduce a hybrid algorithm that achieves
the best performance for each value ofn andk. Number par-
titioning is closely related to bin-packing, and advances in
either problem can be applied to the other.

Introduction and Overview
Given a multiset ofn positive integers, the NP-complete
problem of number partitioning is to assign each integer
to one ofk subsets, so that the largest sum of the integers
assigned to any subset is minimized (Garey and Johnson
1979). For example, an optimal two-way partition of the
integers{4, 5, 6, 7, 8} is {4, 5, 6} and{7, 8}, since both sub-
sets sum to 15, which minimizes the largest subset sum. This
is perhaps the simplest NP-complete problem to describe.

One application of number partitioning is to scheduling.
Given a set ofn jobs, each with an associated running time,
and a set ofk identical machines, such as computers or CPU
cores, schedule each job on a machine in order to complete
all the jobs as soon as possible. The completion time of
each machine is the sum of the running times of the jobs
assigned to it, while the total completion time is the longest
completion time of any machine. Another application is to
voting manipulation (Walsh 2009).

We begin with two-way partitioning, then consider multi-
way partitioning. In each case, we describe the relevant al-
gorithms, introduce two new algorithms for multi-way par-
titioning, and compare their performance experimentally.

Two-Way Number Partitioning
The subset-sum problem is to find a subset of a set of inte-
gers whose sum is closest to a given target value. Two-way

partitioning is a special case of this problem, where the tar-
get value is half the sum of all the integers. We describe five
different optimal algorithms for these problems. A sixth al-
gorithm, dynamic programming, is not competitive in either
time or space (Korf and Schreiber 2013).

Inclusion-Exclusion (IE)
Perhaps the simplest way to generate all subsets of a given
set is to search a binary tree depth-first, where each level cor-
responds to a different element. Each node includes the ele-
ment on the left branch, and excludes it on the right branch.
The leaves correspond to complete subsets. We first sort the
integers, then consider them in decreasing order, searching
the tree from left to right. We prune the tree as follows. If
the integers included at a given node exceed the sum of the
best subset found so far, we prune that node. Similarly, if
including all the remaining integers below a node does not
generate a subset sum better than the best so far, we prune
that node as well.

Complete Greedy Algorithm (CGA)
A similar algorithm that finds better solutions sooner is the
complete greedy algorithm (CGA). It also sorts the inte-
gers in decreasing order, assigning a different integer at each
level, and searches the same tree, but reorders the branches.
The left branch of each node assigns the next integer to the
subset with the smaller sum so far, and the right branch as-
signs it to the subset with the larger sum. Thus, the first
solution found is that returned by the obvious greedy heuris-
tic for this problem. CGA keeps track of the larger subset
sum of the best solution found so far, and prunes a branch
when the sum of either subset equals or exceeds this value.

Complete Karmarkar-Karp (CKK)
An even better algorithm is based on a heuristic approxima-
tion originally called set differencing (Karmarkar and Karp
1982), but usually referred to as KK. KK sorts the integers in
decreasing order, and at each step replaces the two largest in-
tegers with their difference. This is equivalent to separating
the two largest integers in different subsets, without commit-
ting to their final placement. For example, placing 8 and 7
in different subsets is equivalent to placing a 1 in the subset
the 8 is assigned to. The difference is then treated as another
integer to be assigned. The algorithm continues until only



one integer is left, which is the difference between the sub-
set sums of the final partition. Some additional bookkeeping
is needed to construct the actual partition. The KK heuristic
finds much better solutions than the greedy heuristic.

The Complete Karmarkar-Karp algorithm (CKK) is a
complete optimal algorithm (Korf 1998). While KK always
places the two largest integers in different subsets, the only
other option is to place them in the same subset, by replac-
ing them with their sum. Thus, CKK searches a binary tree
where at each node the left branch replaces the two largest
integers by their difference, and the right branch replaces
them by their sum. The first solution found is the KK solu-
tion. If the largest integer equals or exceeds the sum of the
remaining integers, they are placed in opposite subsets.

The time complexity of IE, CGA, and CKK are all about
O(2n), wheren is the number of integers. Pruning reduces
this complexity slightly. Their space complexity isO(n).

Horowitz and Sahni (HS)
Horowitz and Sahni (HS) presented a faster algorithm for
the subset sum problem. It divides then integers into two
“half” setsa andc, each of sizen/2. Then it generates all
2n/2 subsets of each half set, including the empty set. The
two lists of subsets are sorted by their subset sums. Any
subset of the original integers consists of a subset of thea
integers concatenated with a subset of thec integers. Next,
it initializes a pointer to the empty subset from thea list, and
the complete subset from thec list. If the subset sum pointed
to by thea pointer, plus the subset sum pointed to by thec
pointer, is more than half the sum of all the integers, thec
pointer is decremented to the subset with the next smaller
sum. Alternatively, if the sum of the subset sums pointed
to by the two pointers is less than half the total sum, thea
pointer is incremented to the subset with the next larger sum.
If the sum of the two subset sums equals half the total sum,
the algorithm terminates. Else, HS continues until either list
of subsets is exhausted, returning the best solution found.

HS runs inO((n/2)2n/2) time andO(2n/2) space. This
is much faster than IE, CGA and CKK, but its memory re-
quirement limits it to about 50 integers.

Schroeppel and Shamir (SS)
The (Schroeppel and Shamir 1981) algorithm (SS) is based
on HS, but uses much less space. HS uses the subsets from
thea andc lists in order of their subset sums. Rather than
generating, storing, and sorting all these subsets, SS gener-
ates them as needed in order of their subset sums.

SS divides then integers into four setsa, b, c andd, each
of sizen/4, generates all2n/4 subsets of each set, and sorts
them in order of their sums. The subsets from thea andb
lists are combined in a min heap that generates all subsets
of elements froma andb in increasing order of their sums.
Each element of the heap consists of a subset from thea list,
and a subset from theb list. Initially, it contains all pairs
combining the empty set from thea list with each subset
from theb list. The top of the heap contains the pair whose
subset sum is the current smallest. Whenever a pair(ai, bj)
is popped off the top of the heap, it is replaced in the heap by

a new pair(ai+1, bj). Similarly, the subsets from thec and
d lists are combined in a max heap, which returns all subsets
from thec andd lists in decreasing order of their sums. SS
uses these heaps to generate the subset sums in sorted order,
and combines them in the same way as the HS algorithm.

SS runs in timeO((n/4)2n/2), but only requiresO(2n/4)
space, making it practical for up to about 100 integers.

A recent algorithm reduces this runtime to approximately
O(2n/3) (Howgrave-Graham and Joux 2010), but is proba-
bilistic, solving only the decision problem for a given subset
sum. It cannot prove there is no solution for a given sum,
and doesn’t return the subset sum closest to a target value.

Efficiently Generating Complement Sets
For every subset generated, there is a complement subset.
For efficiency, we do not want to generate both sets from
scratch, but generate the complement sum by subtracting the
original sum from the total sum. This optimization is obvi-
ous for theO(2n) algorithms described above. For CGA,
for example, we only put the largest number in one of the
subsets. To implement this for HS or SS, we simply exclude
the largest integer when generating the original sets.

Performance of Two-Way Partitioning
Asymptotic Complexity
Our two-way partitioning algorithms fall into two classes:
linear space and exponential space. Inclusion-exclusion
(IE), the complete greedy algorithm (CGA) and the com-
plete Karmarkar-Karp algorithm (CKK) each run inO(2n)
time, and use onlyO(n) space. Horowitz and Sahni (HS)
runs inO((n/2)2n/2) time and usesO(2n/2) space, while
SS runs inO((n/4)2n/2) time and usesO(2n/4) space.

Choice of Benchmarks
For the experiments in this paper, we use use integers chosen
randomly and uniformly from zero to248−1. The reason for
such high-precision integers is to avoidperfect partitions. If
the sum of all the integers is divisible by the number of sub-
setsk, then all subset sums are equal in a perfect partition.
Otherwise, the subset sums in a perfect partition differ by
at most one. The example at the beginning of this paper is
an example of a perfect partition. Once a perfect partition is
found, search terminates immediately, since any perfect par-
tition is optimal. This makes problem instances with perfect
partitions easier to solve, and those without perfect parti-
tions more difficult. Thus, we use high-precision integers to
create hard problems without perfect partitions.

Empirical Results
Among theO(2n) algorithms, CKK is the fastest, followed
by CGA, and then IE. Their relative performance diverges
with increasingn. At n = 40, CKK is about about twice
as fast as CGA, and about about three times as fast as IE.
Among theO(n2n/2) algorithms, SS is about twice as fast
as HS, and since it also uses much less memory, SS domi-
nates HS. Both HS and SS have higher constant factor over-
heads than theO(2n) algorithms, however. Forn ≤ 11,
CKK is the fastest, while forn ≥ 12, SS is the fastest.



Columns 2, 3, and 4 of Table 1 show the performance of
IE and SS for two-way partitioning of 30 through 50 inte-
gers. We chose to show IE to allow a comparison with the
algorithm described in (Moffitt 2013), which is essentially
IE for two-way partitioning. Columns 2 and 3 show running
times in seconds, averaged over 100 different instances, for
IE and SS, respectively. The empty positions in column 2
represent problems that took IE too long to run. Column 4
is the ratio of the running times of the two algorithms. As
expected, this ratio increases monotonically with increasing
n. Forn = 44, SS is over 4500 times faster than IE.

Multi-Way Partitioning
For partitioning more than two ways, the previous state of
the art is represented by two different algorithms: recursive
number partitioning (RNP) (Korf and Schreiber 2013), and
the (Moffitt 2013) algorithm.

Three-Way Partitioning

We begin with three-way partitioning. Both algorithms first
run a polynomial-time heuristic to get an approximate solu-
tion, providing an upper boundb on the largest subset sum
in an optimal solution. RNP uses the generalization of the
two-way Karmarkar-Karp approximation to multiway parti-
tioning, while (Moffitt 2013) uses the greedy approximation.
Then, both algorithms construct first subsets which could be
part of a better three-way partition. The upper bound on the
sum of these subsets isb − 1, and the lower bound on their
sum iss− 2 ∗ (b− 1), wheres is the sum of all the integers.
The reason for the lower bound is that it must be possible to
partition the remaining integers into two sets, both of whose
sums are less thanb. To eliminate duplicate partitions that
differ only by a permutation of the subsets, both algorithms
include the largest integer in these first subsets.

To generate these subsets, (Moffitt 2013) uses the
inclusion-exclusion (IE) algorithm, while RNP uses an ex-
tension of the Schroeppel and Shamir algorithm (ESS) (Korf
2011). Rather than generating a single subset whose sum is
closest to a target value, ESS generates all subsets whose
sums fall between the above lower and upper bounds.

For each first subset in the computed range, both algo-
rithms partition the remaining integers two ways. While op-
timally partitioning the remaining elements two ways will
produce the best three-way partition that includes the first
subset, it’s not strictly necessary. The remaining integers
only have to be partitioned into two sets, both of whose sums
are less than or equal to the sum of the first subset, since the
overall objective function is the largest subset sum.

Both algorithms use branch-and-bound. If the largest sub-
set sum in a new solution is less thanb, the best so far,b is
reduced to the new cost, and the lower bound is increased
accordingly, until an optimal solution is found and verified.

Four or More-Way Partitioning

For four or more way partitioning, the two algorithms differ
in another important respect. (Moffitt 2013) generates all
possible first subsets with sums in the computed range, and

for each of these, recursively partitions the remaining inte-
gersk−1 ways, generating the subsets sequentially. In addi-
tion to keeping track of the best solution so far, it also keeps
track ofm, the maximum subset sum among the completed
subsets in the current solution. For each recursive call, it
returns when it has partitioned the remaining integers into
subsets whose sums are all less than or equal tom, rather
than optimally partitioning the remaining integers. Also,to
eliminate duplicate partitions, each subset always includes
the largest remaining integer.

In contrast, for four-way partitioning, RNP generates all
two-way partitions that could possibly be further divided
into a four-way partition better than the current best so far.
In other words, each top-level subset sum must be less than
or equal to2(b − 1), so that it could be partitioned into two
subsets, each with sums less thanb. For each such top-level
partition, the subset with fewer integers is optimally parti-
tioned two ways, and if both resulting subset sums are less
thatb, then the other subset is partitioned two ways. Ifm is
the larger subset sum of the first two final subsets, the other
top-level subset is only partitioned into two subsets both of
whose sums are less than or equal tom if possible, rather
than optimally partitioning it two ways.

For five-way partitioning, RNP partitions all the integers
at the top level into two subsets, with the first subpartitioned
two ways and the second subpartitioned three ways. Six-way
partitioning divides the integers into two subsets at the top
level, each of which are then subpartitioned three ways, etc.
In other words, while (Moffitt 2013) generates the final sub-
sets sequentially, RNP recursively decomposes the original
integers into the final subsets in a balanced fashion. Sequen-
tial partitioning was implemented in (Korf 2009), but then
replaced with balanced recursive partitioning (Korf 2011).

Sequentially generating the final subsets is more efficient
than the balanced recursive decomposition of RNP, and the
difference increases with increasingk. This can be seen by
comparing our results in Tables 1 and 2 with those in Table
4 of (Korf and Schreiber 2013). If we plot the distribution of
the sums of all subsets of a set of integers, we get a normal or
bell-shaped curve. The most common subset sums are those
closest to half the sum of all the integers. For larger values
of k, the subsets whose sums are closest tos/k, wheres is
the sum of all the integers, are much less common. Since
there are fewer of them, it is more efficient to generate these
individual subsets, than to recursively partition the numbers
in a balanced way. This is the primary reason for the dra-
matic performance improvements shown in (Moffitt 2013),
compared to RNP, for seven or more subsets.

Sequential Number Partitioning (SNP)
Based on this observation, we propose a new algorithm,
calledsequential number partitioning(SNP). Fork-way par-
titioning, SNP generates all first subsets with sums within
the lower and upper bounds described above, and then for
each, recursively partitions the remaining numbersk − 1
ways, as in (Moffitt 2013) and (Korf 2009). As soon as SNP
finds a recursive partition whose largest sum is no greater
thanm, the largest sum of the completed subsets in the cur-
rent solution, it returns, and otherwise it optimally partitions



k 2-Way 3-Way 4-Way 5-Way 6-Way
n IE SS Ratio Mof SNP Ratio Mof SNP Ratio Mof SNP Ratio Mof SNP Ratio
30 .162 .002 106 .036 .002 19.5 .019 .004 5.40 .014 .008 1.82 .013 .017 .776
31 .304 .002 133 .061 .003 22.0 .031 .006 5.59 .023 .012 2.02 .019 .023 .822
32 .590 .003 175 .114 .004 30.9 .055 .007 7.66 .039 .016 2.42 .034 .036 .962
33 1.13 .005 215 .202 .006 33.3 .092 .012 7.93 .064 .025 2.51 .053 .053 1.00
34 2.15 .007 298 .364 .008 48.3 .154 .015 10.1 .107 .034 3.11 .088 .075 1.17
35 4.13 .011 389 .649 .012 54.1 .264 .024 11.3 .171 .051 3.36 .143 .113 1.27
36 7.88 .016 494 1.14 .015 76.9 .453 .032 14.3 .279 .071 3.96 .224 .159 1.41
37 15.6 .024 649 2.08 .025 83.1 .784 .051 15.3 .475 .114 4.18 .364 .257 1.42
38 29.9 .034 885 3.80 .031 121 1.32 .067 19.6 .740 .150 4.93 .583 .362 1.61
39 56.1 .049 115 6.76 .051 134 2.30 .110 20.9 1.27 .240 5.28 .960 .574 1.67
40 112 .074 1524 12.6 .063 200 4.07 .143 28.5 2.04 .334 6.10 1.54 .829 1.86
41 213 .110 1937 22.7 .110 206 6.63 .227 29.2 3.56 .536 6.63 2.52 1.27 1.98
42 415 .156 2658 41.6 .134 310 11.5 .295 38.9 6.33 .755 8.38 4.44 1.86 2.38
43 779 .221 3533 74.8 .222 336 19.0 .485 39.2 9.63 1.13 8.52 7.12 2.89 2.47
44 1542 .339 4556 139 .274 506 34.2 .644 53.2 16.8 1.67 10.0 11.6 4.24 2.74
45 .490 254 .472 538 57.1 1.02 55.9 28.9 2.63 11.0 19.5 6.35 3.07
46 .699 460 .557 825 105 1.41 73.9 49.9 3.76 13.3 32.3 9.38 3.45
47 .962 851 .938 908 182 2.25 81.0 84.0 5.99 14.0 54.5 15.4 3.54
48 1.45 1.14 303 2.93 104 139 8.13 17.1 88.0 22.0 3.99
49 1.93 1.99 539 4.66 116 233 12.8 18.2 145 33.5 4.32
50 2.29 2.35 956 6.61 145 397 18.2 21.8 244 49.5 4.93

Table 1: Average Time in Seconds to Optimally Partition Uniform Random 48-bit Integers 2, 3, 4, 5, and 6 Ways

the remaining numbers, if there is a partition whose largest
subset is less thanb, the largest subset of the best complete
solution found so far. The main difference between SNP and
(Moffitt 2013) and (Korf 2009) is that SNP uses the extended
Schroeppel and Shamir algorithm (ESS) to generate the sub-
sets, rather than inclusion-exclusion (IE). Since ESS is less
efficient for smalln, SNP uses the complete greedy algo-
rithm (CGA) for recursive calls with smalln andk > 2, and
the complete Karmarkar Karp algorithm (CKK) for two-way
partitioning of 11 or fewer integers.

Dominance Pruning

(Moffitt 2013) also addsdominance pruning. Dominance
pruning was first introduced by (Martello and Toth 1990a;
1990b) for bin packing, and used in (Korf 2002; 2003), but
was not previously used for number partitioning. A given
bin packing need not be considered as part of a solution if it
is dominated by another packing of the same bin that always
leads to a solution at least as good. The simplest example
involves two integersx andy that sum to exactly the bin
capacity. In that case, there always is an optimal solution
with x andy in the same bin, and we can reject any solutions
that put them in different bins. The reason is that given a
complete bin containingx but noty, all other integers in the
bin with x can be swapped withy, bringingx andy into the
same bin, without increasing the total number of bins.

The general case of dominance for number partitioning
is as follows: In any completed subset, if any single ex-
cluded integer can be swapped for any set of included inte-
gers whose sum is less than or equal to the excluded integer,
without exceeding the available bin capacity, then the subset

is dominated, and need not be considered. We explain below
what we mean by “available bin capacity”.

(Moffitt 2013) implements two special cases of this gen-
eral rule. First, if an integerx is excluded, and including it
along with the larger integers included in the subset would
not raise the subset sum tob or more, the largest subset sum
in the best solution found so far, the subset must include a
set of smaller integers whose sum exceedsx. This is done
by raising the lower bound on the subset sum, if necessary.
Second, any excluded number whose inclusion would not
raise the subset sum beyondm, the largest subset sum of the
completed subsets in the current solution, must be included.

SNP also uses dominance pruning, but in a slightly differ-
ent way. The first rule described above from (Moffitt 2013)
is not valid in SNP, because the subsets are generated in a
different order. Inclusion-exclusion always includes an in-
teger before excluding it, and assigns integers in decreasing
order. ESS generates subsets in a different and more com-
plex order. ESS implements the first rule above, but using
m instead ofb as the bin capacity. It implements the second
rule the same way. In addition, if any integer excluded from
a subset can be swapped with the next smaller included inte-
ger without exceedingm, the subset is pruned as well. Full
dominance pruning, which requires generating all subsets of
included numbers, was too expensive to be worthwhile.

Empirical Performance Comparison
We empirically compared the performance of the (Moffitt
2013) algorithm with sequential number partitioning (SNP),
for two through ten-way partitioning. We used 48-bit inte-
gers uniformly distributed between 0 and248 − 1 to gen-



k 7-Way 8-Way 9-Way 10-Way
n Mof SNP Ratio Mof SNP Ratio Mof SNP Ratio Mof SNP Ratio
30 .012 .031 2.53 .013 .054 4.05 .008 .070 9.09 .016 .217 13.6
31 .017 .044 2.56 .018 .074 4.09 .016 .101 6.20 .013 .275 21.9
32 .032 .069 2.18 .029 .116 4.02 .022 .145 6.69 .018 .210 12.0
33 .050 .105 2.10 .051 .202 3.96 .045 .294 6.48 .040 .377 9.43
34 .076 .155 2.04 .071 .293 4.11 .076 .462 6.07 .064 .570 8.94
35 .124 .233 1.88 .129 .476 3.70 .115 .737 6.43 .125 .979 7.83
36 .218 .375 1.72 .203 .729 3.60 .181 1.15 6.35 .207 1.80 8.60
37 .368 .625 1.70 .320 1.14 3.58 .293 1.89 6.47 .344 2.90 8.41
38 .521 .787 1.51 .510 1.82 3.56 .522 3.06 5.85 .467 4.24 9.08
39 .835 1.16 1.38 .779 2.55 3.27 .751 4.46 5.93 .708 6.88 9.72
40 1.36 1.85 1.63 1.41 4.27 3.04 1.24 7.74 6.22 1.13 12.1 10.7
41 2.18 2.82 1.29 2.08 6.44 3.09 1.90 11.8 6.21 1.78 18.9 10.6
42 3.49 3.97 1.14 3.44 9.49 2.76 2.97 17.9 6.04 2.94 32.4 11.0
43 5.67 6.97 1.23 5.66 15.5 2.73 5.31 30.5 5.75 5.10 54.7 10.7
44 9.70 10.5 1.08 8.44 22.4 2.65 9.05 51.0 5.63 7.63 78.5 10.3
45 15.6 15.2 .975 15.2 40.1 2.64 13.2 73.5 5.56 13.1 147 11.2
46 24.6 22.9 .932 23.3 53.7 2.31 22.0 115 5.23 23.6 252 10.7
47 41.3 36.2 .877 36.1 84.3 2.34 33.8 181 5.34 36.1 391 10.8
48 66.8 53.8 .805 57.9 132 2.28 62.5 332 5.32 58.3 556 9.54
49 110 81.2 .740 98.7 208 2.11 85.0 440 5.18 88.5 909 10.3
50 182 128 .704 147 289 1.96 155 765 4.94 143 1551 10.8

Table 2: Average Time in Seconds to Optimally Partition Uniform Random 48-bit Integers 7, 8, 9, and 10 Ways

erate hard instances without perfect partitions. Table one
shows the results for two through six-way partitioning, with
n ranging from 30 to 50 from the top to bottom row. The
two-way data was already discussed. In each group of three
columns, the first two show the running times in seconds to
optimally partitionn integers, averaged over 100 different
instances, for the (Moffitt 2013) algorithm and SNP, respec-
tively. The third column in each group shows the running
time of the (Moffitt 2013) algorithm divided by the running
time of SNP. This is how many times faster SNP is than
(Moffitt 2013). The ratios are based on higher-precision data
than that displayed in the table.

In each case except for 6-way partitioning withn ≤ 32,
SNP is faster than (Moffitt 2013). Furthermore, for a given
number of subsets, the ratios of the running times increase
monotonically with increasingn, strongly suggesting that
SNP is asymptotically faster than (Moffitt 2013). For three-
way partitioning, we see speedups of over 900 times forn =
47. For 4-way partitioning, SNP is over 140 times faster than
(Moffitt 2013) forn = 50. For 5-way partitioning, it is over
20 times faster forn = 50. For 6-way partitioning, SNP
is slower than (Moffitt 2013) forn up through 32, but SNP
is faster for larger values ofn, and almost five times faster
by n = 50. This transition occurs atn = 15 for three-way
partitioning,n = 19 for four-way partitioning, andn = 25
for five-way partitioning. The speedup of SNP over (Moffitt
2013) decreases with larger numbers of subsets, however.

Table 2 shows data in the same format as Table 1, but for
7, 8, 9, and 10-way partitioning. Unlike Table 1, the ra-
tios presented here are the running times of SNP divided by
the running times of (Moffitt 2013), indicating how many

times faster (Moffitt 2013) is than SNP. For 7-way partition-
ing, (Moffitt 2013) is faster forn up through 44, but SNP
is faster for largern. For eight-way partitioning, (Moffitt
2013) is about four times faster then SNP forn = 30, but
decreases to about two times faster byn = 50. We con-
jecture that for some value ofn > 50, SNP will be faster
than (Moffitt 2013). For nine-way partitioning, we also see a
small decrease in the ratio of the running times with increas-
ingn, but (Moffitt 2013) is almost five times faster than SNP
atn = 50. We see a similar pattern for ten-way partitioning,
with (Moffitt 2013) about ten times faster than SNP. We are
still running SNP to partition 49 and 50 integers ten ways.

A Hybrid Algorithm
As shown in these tables, the fastest partitioning algorithm
depends on the number of subsetsk and the number of in-
tegersn, and the performance differences between them can
be orders of magnitude. In particular, (Moffitt 2013) is faster
for smaller values ofn, and SNP is faster for larger values of
n. The crossover point depends onk, and increases with in-
creasingk. This suggests a hybrid algorithm in which each
top-level or recursive call runs the algorithm that is fastest
for the particular values ofk and n. For two-way parti-
tioning, the complete Karmarkar-Karp (CKK) is used for
n ≤ 11, and SS is used for larger values ofn. For three-
way partitioning, the complete greedy algorithm (CGA) is
used forn ≤ 10, and SNP is used for larger values ofn. For
all larger values ofk, (Moffitt 2013) is used for smaller val-
ues ofn, and SNP is used for larger values. The crossover
values were all determined experimentally.

We implemented this algorithm, and its running times are



within one percent of the faster running times shown in Ta-
bles 1 and 2, as a function ofn and k. Since this is the
performance one would expect simply by choosing the bet-
ter algorithm at the top level, why doesn’t the full hybrid
algorithm perform better? The reason is that because of the
crossover points, most recursive calls are executed by the
same algorithm chosen at the top level. For example, if the
top-level call is made to SNP, most of the recursive calls are
made to SNP, and similarly for the (Moffitt 2013) algorithm.

Relation to Bin Packing
Number partitioning in closely related to another simple NP-
complete problem called bin packing. In bin-packing, we
are given a set ofn integers, and a fixed bin capacityc. We
want to pack each integer into a bin so that the sum of the
integers packed into each bin does not exceed the capacity
c, while minimizing the number of bins used. The only dif-
ference between number partitioning and bin packing is that
number partitioning fixes the number of subsets or bins, and
minimizes the needed capacity, while bin packing fixes the
capacity and minimizes the number of bins.

While all NP-complete problems are polynomially re-
ducible to each other, the close relationship between num-
ber partitioning and bin-packing means that algorithms for
one are often directly applicable to the other. For example,
the usual way to solve a bin-packing problem is to first run
an polynomial-time approximation algorithm, such as best-
fit decreasing, to get an upper bound on the number of bins
needed. Then reduce the number of bins by one with each
iteration, until all the items can no longer be packed into
the given number of bins, or a lower bound on the num-
ber of bins is reached, such as the sum of all the integers,
divided by the number of bins, rounded up. Almost all bin-
packing instances can be solved this way in just a few iter-
ations. Since each of these iterations has a fixed number of
bins, they can be solved by a number partitioning algorithm,
where the bin capacity is fixed, and which terminates when
it either succeeds or fails to achieve a partition whose largest
subset sum doesn’t exceed the bin capacity.

Similarly, any bin-packing algorithm can be used to op-
timally solve number partitioning as follows. First, run
a polynomial-time heuristic, such as the Karmarkar-Karp
heuristic, to get an upper bound on the maximum subset
sum, and also compute a lower bound on the maximum sub-
set sum, such as the sum of all the integers divided by the
number of subsets and rounded up. Then perform a binary
search over this range of subset sums, where each probe runs
a bin-packing algorithm with a fixed capacity. If the num-
ber of bins needed exceedsk, the number of subsets, then
increase the bin capacity on the next probe. Otherwise, de-
crease the bin capacity on the next probe. We can terminate
each bin-packing probe when we either achieve a feasible
packing withk bins, or determine that it isn’t feasible.

This is the strategy used in the operations research com-
munity to solve number partitioning (Coffman, Garey, and
Johnson 1978; Dell’Amico et al. 2008), which they call
“identical parallel machine scheduling”, following the ap-
plication presented at the beginning of this paper. In our
experiments with this approach, it is much slower than our

hybrid algorithm for two through nine-way partitioning, but
performs about the same for ten-way partitioning. The dif-
ference in performance between the two methods decreases
with increasing numbers of subsets, suggesting that the bin-
packing approach may be faster with more than ten subsets.

Conclusions
The previous state of the art for optimally partitioning inte-
gers up to ten ways is represented by two different lines of
research, published independently. We compare the two ap-
proaches, and introduce a new algorithm, sequential number
partitioning (SNP), that generates subsets sequentially,but
uses an extension of the Schroeppel and Shamir algorithm
(ESS) to generate the individual subsets. For largen, SNP
is much faster than (Moffitt 2013), but for smalln, (Mof-
fitt 2013) is faster. We also propose a hybrid combination
of these two algorithms that achieves the performance of the
faster algorithm, as a function ofn andk.

Number partitioning and bin packing are closely related,
and we consider them different variations of the same prob-
lem. In the operations research community, number parti-
tioning is solved by repeated applications of bin packing,
performing a binary search over a range of bin capacities.
In our experiments, this approach is much slower than our
hybrid algorithm for up to nine subsets, but perfoms compa-
rably for ten subsets, and may be faster with more subsets.

All the algorithms discussed here are anytime algorithms,
meaning that they return an approximate solution almost im-
mediately, and then continue to find better solutions, even-
tually finding, and still later verifying, an optimal solution.
Thus, on problems that are too large to be solved optimally,
they can run for as long as time is available, returning the
best solution found in that time.
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