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Abstract

Given a multiset ofn positive integers, the NP-complete
problem of number partitioning is to assign each integer to
one of k subsets, such that the largest sum of the integers
assigned to any subset is minimized. Last year, three differ
ent papers on optimally solving this problem appeared in the
literature, two from the first two authors, and one from the
third author. We resolve here competing claims of these pa-
pers, showing that different algorithms work best for diffe
ent values of, andk, with orders of magnitude differences in
their performance. We combine the best ideas from both ap-
proaches into a new algorithm, called sequential number par
titioning, and also introduce a hybrid algorithm that agk®

the best performance for each valuenondk. Number par-
titioning is closely related to bin-packing, and advanaes i
either problem can be applied to the other.

Introduction and Overview

Given a multiset ofn positive integers, the NP-complete
problem of number partitioning is to assign each integer
to one ofk subsets, so that the largest sum of the integers
assigned to any subset is minimized (Garey and Johnson
1979). For example, an optimal two-way partition of the
integers{4,5,6,7,8}is {4, 5,6} and{7, 8}, since both sub-
sets sum to 15, which minimizes the largest subset sum. This
is perhaps the simplest NP-complete problem to describe.

One application of number partitioning is to scheduling.
Given a set of: jobs, each with an associated running time,
and a set ok identical machines, such as computers or CPU
cores, schedule each job on a machine in order to complete
all the jobs as soon as possible. The completion time of
each machine is the sum of the running times of the jobs
assigned to it, while the total completion time is the loriges
completion time of any machine. Another application is to
voting manipulation (Walsh 2009).

We begin with two-way partitioning, then consider multi-
way partitioning. In each case, we describe the relevant al-
gorithms, introduce two new algorithms for multi-way par-
titioning, and compare their performance experimentally.

Two-Way Number Partitioning

The subset-sum problem is to find a subset of a set of inte-
gers whose sum is closest to a given target value. Two-way

partitioning is a special case of this problem, where the tar
get value is half the sum of all the integers. We describe five
different optimal algorithms for these problems. A sixth al
gorithm, dynamic programming, is not competitive in either
time or space (Korf and Schreiber 2013).

Inclusion-Exclusion (IE)

Perhaps the simplest way to generate all subsets of a given
setis to search a binary tree depth-first, where each level co
responds to a different element. Each node includes the ele-
ment on the left branch, and excludes it on the right branch.
The leaves correspond to complete subsets. We first sort the
integers, then consider them in decreasing order, seaychin
the tree from left to right. We prune the tree as follows. If
the integers included at a given node exceed the sum of the
best subset found so far, we prune that node. Similarly, if
including all the remaining integers below a node does not
generate a subset sum better than the best so far, we prune
that node as well.

Complete Greedy Algorithm (CGA)

A similar algorithm that finds better solutions sooner is the
complete greedy algorithm (CGA). It also sorts the inte-
gers in decreasing order, assigning a different integeactt e
level, and searches the same tree, but reorders the branches
The left branch of each node assigns the next integer to the
subset with the smaller sum so far, and the right branch as-
signs it to the subset with the larger sum. Thus, the first
solution found is that returned by the obvious greedy heuris
tic for this problem. CGA keeps track of the larger subset
sum of the best solution found so far, and prunes a branch
when the sum of either subset equals or exceeds this value.

Complete Karmarkar-Karp (CKK)

An even better algorithm is based on a heuristic approxima-
tion originally called set differencing (Karmarkar and igar
1982), but usually referred to as KK. KK sorts the integersin
decreasing order, and at each step replaces the two langest i
tegers with their difference. This is equivalent to sepatat
the two largestintegers in different subsets, without catmm
ting to their final placement. For example, placing 8 and 7
in different subsets is equivalent to placing a 1 in the subse
the 8 is assigned to. The difference is then treated as anothe
integer to be assigned. The algorithm continues until only



one integer is left, which is the difference between the sub- a new pair(a;;+1,b;). Similarly, the subsets from theand
set sums of the final partition. Some additional bookkeeping d lists are combined in a max heap, which returns all subsets
is needed to construct the actual partition. The KK heuwristi  from thec andd lists in decreasing order of their sums. SS
finds much better solutions than the greedy heuristic. uses these heaps to generate the subset sums in sorted order,
The Complete Karmarkar-Karp algorithm (CKK) is a and combines them in the same way as the HS algorithm.
complete optimal algorithm (Korf 1998). While KK always SS runs in timeD((n/4)2™/2), but only require®(2"/4)
places the two largest integers in different subsets, tiye on  space, making it practical for up to about 100 integers.
other option is to place them in the same subset, by replac- A recent algorithm reduces this runtime to approximately
ing them with their sum. Thus, CKK searches a binary tree 0(2"/3) (Howgrave-Graham and Joux 2010), but is proba-
where at each node the left branch replaces the two largest pilistic, solving only the decision problem for a given sabs
integers by their difference, and the right branch replaces sum. It cannot prove there is no solution for a given sum,

them by their sum. The first solution found is the KK solu-  and doesn’t return the subset sum closest to a target value.
tion. If the largest integer equals or exceeds the sum of the

remaining integers, they are placed in opposite subsets. Efficiently Generating Complement Sets
The time complexity of IE, CGA, and CKK are all about  For every subset generated, there is a complement subset.
O(2"), wheren is the number of integers. Pruning reduces For efficiency, we do not want to generate both sets from

this complexity slightly. Their space complexityG¥n). scratch, but generate the complement sum by subtracting the
i i original sum from the total sum. This optimization is obvi-
Horowitz and Sahni (HS) ous for theO(2™) algorithms described above. For CGA,

Horowitz and Sahni (HS) presented a faster algorithm for for example, we only put the largest number in one of the
the subset sum problem. It divides thentegers into two  Subsets. To implement this for HS or SS, we simply exclude
“half” setsa andc, each of size1/2. Then it generates all  the largestinteger when generating the original sets.

27/2 subsets of each half set, including the empty set. The

two lists of subsets are sorted by their subset sums. Any Performance of Two-Way Partitioning

subset of the original integers consists of a subset oithe ~ Asymptotic Complexity

integers concatenated with a subset of ¢hietegers. Next, Our two-way partitioning algorithms fall into two classes:
itinitializes a pointer to the empty subset from thist, and linear space and exponential space. Inclusion-exclusion

the complete subset from tiadist. If the subset sum pointed  (|E), the complete greedy algorithm (CGA) and the com-

to by thea pointer, plus the subset sum pointed to by the  plete Karmarkar-Karp algorithm (CKK) each rundn2")

pointer, is more than half the sum of all the integers,dhe  time, and use only)(n) space. Horowitz and Sahni (HS)

pointer ils decrerrren:ce(il1 to the SLfJbrs]et Witt>h the next smallgr runs inO((n/2)27/2) time and use®(2"/2) space, while

sum. Alternatively, if the sum of the subset sums pointe . HI9N a4 '

to by the two pointers is less than half the total sum,¢he SS runs inO((n/4)2"/?) time and use®)(2"/*) space.

pointer is incremented to the subset with the nextlargersum cnoice of Benchmarks

If the sum of the two subset sums equals half the total sum,

the algorithm terminates. Else, HS continues until eitfsr |

of subsets is exhausted, returning the best solution found.
HS runs inO((n/2)2"/?) time andO(2"/?) space. This

is much faster than IE, CGA and CKK, but its memory re-

quirement limits it to about 50 integers.

For the experiments in this paper, we use use integers chosen
randomly and uniformly from zero @*8 — 1. The reason for
such high-precision integers is to avqidrfect partitions If
the sum of all the integers is divisible by the number of sub-
setsk, then all subset sums are equal in a perfect partition.
Otherwise, the subset sums in a perfect partition differ by
. at most one. The example at the beginning of this paper is
Schroeppel and Shamir (SS) an example of a perfect partition. Once a perfect partiton i
The (Schroeppel and Shamir 1981) algorithm (SS) is based found, search terminates immediately, since any perfaet pa
on HS, but uses much less space. HS uses the subsets fromition is optimal. This makes problem instances with perfec
thea andc lists in order of their subset sums. Rather than partitions easier to solve, and those without perfect parti
generating, storing, and sorting all these subsets, SS-gene tions more difficult. Thus, we use high-precision integers t
ates them as needed in order of their subset sums. create hard problems without perfect partitions.

SS divides the: integers into four sets, b, c andd, each -
of sizen/4, generates alt"/4 subsets of each set, and sorts Empirical Results
them in order of their sums. The subsets from thandb Among theO(2") algorithms, CKK is the fastest, followed
lists are combined in a min heap that generates all subsetsby CGA, and then IE. Their relative performance diverges
of elements fronu andb in increasing order of their sums.  with increasingn. At n = 40, CKK is about about twice
Each element of the heap consists of a subset frorm lisg as fast as CGA, and about about three times as fast as IE.
and a subset from thelist. Initially, it contains all pairs Among theO(n2"/?) algorithms, SS is about twice as fast
combining the empty set from the list with each subset as HS, and since it also uses much less memory, SS domi-
from theb list. The top of the heap contains the pair whose nates HS. Both HS and SS have higher constant factor over-
subset sum is the current smallest. Whenever a(paib,) heads than thé(2") algorithms, however. Fon < 11,
is popped off the top of the heap, itis replaced in the heap by CKK is the fastest, while fon > 12, SS is the fastest.



Columns 2, 3, and 4 of Table 1 show the performance of
IE and SS for two-way partitioning of 30 through 50 inte-
gers. We chose to show IE to allow a comparison with the
algorithm described in (Moffitt 2013), which is essentially
|[E for two-way partitioning. Columns 2 and 3 show running
times in seconds, averaged over 100 different instances, fo
IE and SS, respectively. The empty positions in column 2
represent problems that took IE too long to run. Column 4
is the ratio of the running times of the two algorithms. As
expected, this ratio increases monotonically with indregas
n. Forn = 44, SS is over 4500 times faster than IE.

Multi-Way Partitioning

For partitioning more than two ways, the previous state of
the art is represented by two different algorithms: rearsi
number partitioning (RNP) (Korf and Schreiber 2013), and
the (Moffitt 2013) algorithm.

Three-Way Partitioning

We begin with three-way partitioning. Both algorithms first
run a polynomial-time heuristic to get an approximate solu-
tion, providing an upper bounion the largest subset sum
in an optimal solution. RNP uses the generalization of the
two-way Karmarkar-Karp approximation to multiway parti-
tioning, while (Moffitt 2013) uses the greedy approximation
Then, both algorithms construct first subsets which could be
part of a better three-way partition. The upper bound on the
sum of these subsetsiis- 1, and the lower bound on their
sumiss — 2 x (b — 1), wheres is the sum of all the integers.
The reason for the lower bound is that it must be possible to
partition the remaining integers into two sets, both of whos
sums are less than To eliminate duplicate partitions that
differ only by a permutation of the subsets, both algorithms
include the largest integer in these first subsets.

To generate these subsets, (Moffitt 2013) uses the
inclusion-exclusion (IE) algorithm, while RNP uses an ex-
tension of the Schroeppel and Shamir algorithm (ESS) (Korf
2011). Rather than generating a single subset whose sum i
closest to a target value, ESS generates all subsets whos
sums fall between the above lower and upper bounds.

For each first subset in the computed range, both algo-
rithms partition the remaining integers two ways. While op-
timally partitioning the remaining elements two ways will
produce the best three-way partition that includes the first
subset, it's not strictly necessary. The remaining integer
only have to be partitioned into two sets, both of whose sums
are less than or equal to the sum of the first subset, since the
overall objective function is the largest subset sum.

Both algorithms use branch-and-bound. If the largest sub-
set sum in a new solution is less thiarthe best so faf is
reduced to the new cost, and the lower bound is increase
accordingly, until an optimal solution is found and verified

d

Four or More-Way Partitioning

For four or more way partitioning, the two algorithms differ
in another important respect. (Moffitt 2013) generates all
possible first subsets with sums in the computed range, and

s
epell-shaped curve. The most common subset sums are those

for each of these, recursively partitions the remaining-nt
gersk — 1 ways, generating the subsets sequentially. In addi-
tion to keeping track of the best solution so far, it also leep
track ofm, the maximum subset sum among the completed
subsets in the current solution. For each recursive call, it
returns when it has partitioned the remaining integers into
subsets whose sums are all less than or equal,toather
than optimally partitioning the remaining integers. Also,
eliminate duplicate partitions, each subset always iresud
the largest remaining integer.

In contrast, for four-way partitioning, RNP generates all
two-way partitions that could possibly be further divided
into a four-way patrtition better than the current best so far
In other words, each top-level subset sum must be less than
or equal ta2(b — 1), so that it could be partitioned into two
subsets, each with sums less thharor each such top-level
partition, the subset with fewer integers is optimally part
tioned two ways, and if both resulting subset sums are less
thatb, then the other subset is partitioned two waysnlfs
the larger subset sum of the first two final subsets, the other
top-level subset is only partitioned into two subsets bdth o
whose sums are less than or equahtdf possible, rather
than optimally partitioning it two ways.

For five-way partitioning, RNP patrtitions all the integers
at the top level into two subsets, with the first subpartitidn
two ways and the second subpatrtitioned three ways. Six-way
partitioning divides the integers into two subsets at tige to
level, each of which are then subpartitioned three ways, etc
In other words, while (Moffitt 2013) generates the final sub-
sets sequentially, RNP recursively decomposes the otigina
integers into the final subsets in a balanced fashion. Sequen
tial partitioning was implemented in (Korf 2009), but then
replaced with balanced recursive partitioning (Korf 2011)

Sequentially generating the final subsets is more efficient
than the balanced recursive decomposition of RNP, and the
difference increases with increasikg This can be seen by
comparing our results in Tables 1 and 2 with those in Table
4 of (Korf and Schreiber 2013). If we plot the distribution of
the sums of all subsets of a set of integers, we get a normal or

closest to half the sum of all the integers. For larger values
of k, the subsets whose sums are closest/fg wheres is

the sum of all the integers, are much less common. Since
there are fewer of them, it is more efficient to generate these
individual subsets, than to recursively partition the nensb

in a balanced way. This is the primary reason for the dra-
matic performance improvements shown in (Moffitt 2013),
compared to RNP, for seven or more subsets.

Sequential Number Partitioning (SNP)

Based on this observation, we propose a new algorithm,
calledsequential number partitioningNP). Fork-way par-
titioning, SNP generates all first subsets with sums within
the lower and upper bounds described above, and then for
each, recursively partitions the remaining numbkrs 1
ways, as in (Moffitt 2013) and (Korf 2009). As soon as SNP
finds a recursive partition whose largest sum is no greater
thanm, the largest sum of the completed subsets in the cur-
rent solution, it returns, and otherwise it optimally paoins



k 2-Way 3-Way 4-Way 5-Way 6-Way

n IE SS | Ratio || Mof | SNP | Ratio | Mof | SNP | Ratio || Mof | SNP | Ratio || Mof | SNP | Ratio
30| .162] .002 106 || .036| .002| 19.5( .019| .004| 5.40] .014] .008| 1.82] .013] .017| .776
31| .304| .002 133 .061| .003| 22.0| .031| .006| 5.59]| .023| .012| 2.02| .019| .023| .822
32| .590| .003| 175]| .114| .004| 30.9| .055| .007| 7.66| .039| .016| 2.42| .034| .036| .962
33| 1.13| .005| 215]|| .202| .006| 33.3| .092| .012| 7.93| .064| .025| 2.51| .053| .053| 1.00
34| 2.15| .007| 298| .364| .008| 48.3| .154| .015| 10.1| .107| .034| 3.11| .088| .075| 1.17
35| 4.13| .011| 389 .649| .012| 54.1| .264| .024| 11.3| .171| .051| 3.36| .143| .113| 1.27
36| 7.88| .016| 494 1.14| .015| 76.9| .453| .032| 14.3| .279| .071| 3.96| .224| .159| 1.41
37| 15.6| .024| 649| 2.08| .025| 83.1| .784| .051| 15.3| .475| .114| 4.18| .364| .257| 1.42
38 29.9| .034| 885| 3.80| .031 121} 1.32| .067| 19.6|| .740| .150| 4.93| .583| .362| 1.61
39| 56.1| .049 115 6.76 | .051 134 | 2.30| .110| 20.9|| 1.27| .240| 5.28| .960| .574| 1.67
40 112 | .074 | 1524 12.6| .063| 200 | 4.07| .143| 28.5|| 2.04| .334| 6.10| 1.54| .829| 1.86
41 213 | .110| 1937 22.7| .110| 2061 6.63| .227| 29.2|| 3.56| .536| 6.63| 2.52| 1.27| 1.98
42 415| .156 | 2658 41.6| .134| 310} 11.5| .295| 38.9| 6.33| .755| 8.38|| 4.44| 1.86| 2.38
43 779 | .221| 3533 74.8| .222| 336 19.0| .485| 39.2|| 9.63| 1.13| 8.52| 7.12| 2.89| 2.47
44 || 1542 | .339| 4556 | 139 | .274| 506| 34.2| .644| 53.2| 16.8| 1.67| 10.0| 11.6| 4.24| 2.74

45 490 254 | 472 538 57.1| 1.02| 55.9| 28.9| 2.63| 11.0| 19.5| 6.35| 3.07
46 .699 460 | .557| 825 105| 1.41| 73.9| 49.9| 3.76| 13.3| 32.3| 9.38| 3.45
a7 .962 851 | .938| 908| 182 | 2.25| 81.0| 84.0| 599| 14.0| 545| 154| 3.54
48 1.45 1.14 303| 2.93| 104 139| 8.13| 17.1| 88.0| 22.0| 3.99
49 1.93 1.99 539| 4.66| 116| 233 | 12.8| 18.2| 145| 33.5| 4.32
50 2.29 2.35 956 | 6.61| 145 397| 18.2| 21.8| 244| 49.5| 4.93

Table 1: Average Time in Seconds to Optimally Partition @nii Random 48-bit Integers 2, 3, 4, 5, and 6 Ways

the remaining numbers, if there is a partition whose largest is dominated, and need not be considered. We explain below
subset is less thal the largest subset of the best complete what we mean by “available bin capacity”.

solution found so far. The main difference between SNP and  (Moffitt 2013) implements two special cases of this gen-
(Moffitt 2013) and (Korf 2009) is that SNP uses the extended eral rule. First, if an integer is excluded, and including it
Schroeppel and Shamir algorithm (ESS) to generate the sub- along with the larger integers included in the subset would
sets, rather than inclusion-exclusion (IE). Since ESSds le  not raise the subset sumi@r more, the largest subset sum
efficient for smalln, SNP uses the complete greedy algo- in the best solution found so far, the subset must include a

rithm (CGA) for recursive calls with small andk > 2, and set of smaller integers whose sum exceedd his is done

the complete Karmarkar Karp algorithm (CKK) for two-way by raising the lower bound on the subset sum, if necessary.

partitioning of 11 or fewer integers. Second, any excluded number whose inclusion would not
raise the subset sum beyond the largest subset sum of the

Dominance Pruning completed subsets in the current solution, must be included

) ) ) ] SNP also uses dominance pruning, but in a slightly differ-
(Moffitt 2013) also addslominance pruning Dominance  ent way. The first rule described above from (Moffitt 2013)
pruning was first introduced by (Martello and Toth 1990a; i not valid in SNP, because the subsets are generated in a
1990b) for bin packing, and used in (Korf 2002; 2003), but  gifferent order. Inclusion-exclusion always includes an i
was not previously used for number partitioning. A given teger pefore excluding it, and assigns integers in decrgasi
bin packing need not be considered as part of a solution if it orger. ESS generates subsets in a different and more com-
is dominated by another packing of the same bin that always plex order. ESS implements the first rule above, but using
leads to a solution at least as good. The simplest example ;;, instead o as the bin capacity. It implements the second
involves two integers: andy that sum to exactly the bin  ryje the same way. In addition, if any integer excluded from
capacity. In that case, there always is an optimal solution g sypset can be swapped with the next smaller included inte-
with - andy in the same bin, and we can reject any solutions  ger without exceedingr, the subset is pruned as well. Full
that put them in different bins. The reason is that given a ggminance pruning, which requires generating all subdets o

complete bin containing but noty, all otherintegersinthe  hcluded numbers, was too expensive to be worthwhile.
bin with = can be swapped with, bringingz andy into the

same bin, without increasing the total number of bins. Embirical Perf C .
The general case of dominance for number partitioning mpirical Ferformance L.omparison

is as follows: In any completed subset, if any single ex- We empirically compared the performance of the (Moffitt

cluded integer can be swapped for any set of included inte- 2013) algorithm with sequential number partitioning (SNP)

gers whose sum is less than or equal to the excluded integer,for two through ten-way partitioning. We used 48-bit inte-

without exceeding the available bin capacity, then thesubs  gers uniformly distributed between 0 aad® — 1 to gen-



k 7-Way 8-Way 9-Way 10-Way

n || Mof | SNP | Ratio || Mof | SNP | Ratio || Mof | SNP | Ratio || Mof | SNP | Ratio
30 .012| .031| 2.53]| .013| .054| 4.05] .008| .070| 9.09| .016| .217| 13.6
31| .017| .044| 2.56| .018| .074| 4.09| .016| .101| 6.20| .013| .275| 21.9
32| .032| .069| 2.18| .029| .116| 4.02| .022| .145| 6.69| .018| .210| 12.0
33| .050| .105| 2.10|| .051| .202| 3.96| .045| .294| 6.48| .040| .377| 9.43
34| .076| .155| 2.04| .071| .293| 4.11| .076| .462| 6.07| .064| .570| 8.94
35| .124| .233| 1.88| .129| .476| 3.70| .115| .737| 6.43| .125| .979| 7.83
36 || .218| .375| 1.72|| .203| .729| 3.60| .181| 1.15| 6.35| .207| 1.80| 8.60
37| .368| .625| 1.70|| .320| 1.14| 3.58| .293| 1.89| 6.47| .344| 2.90| 8.41
38| .521| .787| 1.51| .510| 1.82| 3.56| .522| 3.06| 5.85| .467| 4.24| 9.08
39| .835| 1.16| 1.38|| .779| 2.55| 3.27| .751| 4.46| 5.93| .708| 6.88| 9.72
40| 1.36| 1.85| 1.63| 1.41| 4.27| 3.04| 1.24| 7.74| 6.22| 1.13| 12.1| 10.7
41| 2.18| 2.82| 1.29| 2.08| 6.44| 3.09| 1.90| 11.8| 6.21| 1.78| 18.9| 10.6
42 || 3.49| 3.97| 1.14| 3.44| 9.49| 2.76|| 2.97| 17.9| 6.04| 2.94| 32.4| 11.0
43 || 5.67| 6.97| 1.23| 5.66| 15.5| 2.73|| 5.31| 30.5| 5.75| 5.10| 54.7| 10.7
44 11 9.70| 10.5| 1.08| 8.44| 22.4| 2.65| 9.05| 51.0| 5.63| 7.63| 78.5| 10.3
45 || 15.6| 15.2| .975| 15.2| 40.1| 2.64|| 13.2| 73.5| 556 13.1| 147| 11.2
46 || 24.6| 22.9| .932| 23.3| 53.7| 2.31|| 22.0| 115| 5.23| 23.6| 252| 10.7
47 || 41.3| 36.2| .877| 36.1| 84.3| 2.34| 33.8| 181 | 5.34| 36.1| 391| 10.8
48 || 66.8| 53.8| .805| 57.9| 132| 2.28]|| 62.5| 332| 5.32| 58.3| 556| 9.54
49 || 110| 81.2| .740| 98.7| 208 | 2.11| 85.0| 440| 5.18| 88.5| 909| 10.3
50| 182 | 128 | .704| 147| 289| 1.96| 155| 765| 4.94| 143 | 1551| 10.8

Table 2: Average Time in Seconds to Optimally Partition @nifi Random 48-bit Integers 7, 8, 9, and 10 Ways

erate hard instances without perfect partitions. Table one
shows the results for two through six-way partitioning,hwit
n ranging from 30 to 50 from the top to bottom row. The

times faster (Moffitt 2013) is than SNP. For 7-way patrtition-
ing, (Moffitt 2013) is faster fom up through 44, but SNP
is faster for largem. For eight-way partitioning, (Moffitt

two-way data was already discussed. In each group of three 2013) is about four times faster then SNP for= 30, but

columns, the first two show the running times in seconds to
optimally partitionn integers, averaged over 100 different
instances, for the (Moffitt 2013) algorithm and SNP, respec-
tively. The third column in each group shows the running
time of the (Moffitt 2013) algorithm divided by the running
time of SNP. This is how many times faster SNP is than
(Moffitt 2013). The ratios are based on higher-precisioadat
than that displayed in the table.

In each case except for 6-way partitioning with< 32,
SNP is faster than (Moffitt 2013). Furthermore, for a given
number of subsets, the ratios of the running times increase
monotonically with increasing, strongly suggesting that
SNP is asymptotically faster than (Moffitt 2013). For three-
way partitioning, we see speedups of over 900 timesfer
47. For 4-way partitioning, SNP is over 140 times faster than
(Moffitt 2013) forn = 50. For 5-way partitioning, it is over
20 times faster fon = 50. For 6-way partitioning, SNP
is slower than (Moffitt 2013) forn up through 32, but SNP
is faster for larger values of, and almost five times faster
by n = 50. This transition occurs at = 15 for three-way
partitioning,n = 19 for four-way partitioning, anch = 25
for five-way partitioning. The speedup of SNP over (Moffitt
2013) decreases with larger numbers of subsets, however.

Table 2 shows data in the same format as Table 1, but for
7, 8, 9, and 10-way partitioning. Unlike Table 1, the ra-
tios presented here are the running times of SNP divided by
the running times of (Moffitt 2013), indicating how many

decreases to about two times faster/by= 50. We con-
jecture that for some value of > 50, SNP will be faster
than (Moffitt 2013). For nine-way partitioning, we also see a
small decrease in the ratio of the running times with increas
ing n, but (Moffitt 2013) is almost five times faster than SNP
atn = 50. We see a similar pattern for ten-way partitioning,
with (Moffitt 2013) about ten times faster than SNP. We are
still running SNP to partition 49 and 50 integers ten ways.

A Hybrid Algorithm

As shown in these tables, the fastest partitioning algorith
depends on the number of subsktand the number of in-
tegersn, and the performance differences between them can
be orders of magnitude. In particular, (Moffitt 2013) is &ast
for smaller values of., and SNP is faster for larger values of
n. The crossover point depends bpand increases with in-
creasingk. This suggests a hybrid algorithm in which each
top-level or recursive call runs the algorithm that is faste
for the particular values ok andn. For two-way parti-
tioning, the complete Karmarkar-Karp (CKK) is used for
n < 11, and SS is used for larger values»af For three-
way partitioning, the complete greedy algorithm (CGA) is
used forn < 10, and SNP is used for larger valuesrofFor
all larger values of;, (Moffitt 2013) is used for smaller val-
ues ofn, and SNP is used for larger values. The crossover
values were all determined experimentally.

We implemented this algorithm, and its running times are



within one percent of the faster running times shown in Ta- hybrid algorithm for two through nine-way partitioning, tou
bles 1 and 2, as a function af and k. Since this is the performs about the same for ten-way partitioning. The dif-
performance one would expect simply by choosing the bet- ference in performance between the two methods decreases
ter algorithm at the top level, why doesn't the full hybrid  with increasing numbers of subsets, suggesting that the bin
algorithm perform better? The reason is that because of the packing approach may be faster with more than ten subsets.
crossover points, most recursive calls are executed by the
same algorithm chosen at the top level. For example, if the
top-level call is made to SNP, most of the recursive calls are
made to SNP, and similarly for the (Moffitt 2013) algorithm.

Conclusions

The previous state of the art for optimally partitioningent
gers up to ten ways is represented by two different lines of
research, published independently. We compare the two ap-
proaches, and introduce a new algorithm, sequential number
partitioning (SNP), that generates subsets sequentilly,

Relation to Bin Packing

Number partitioning in closely related to another simple NP
complete problem called bin packing. In bin-packing, we uses an extension of the Schroeppel and Shamir algorithm
are given a set of integers, and a fixed bin capacity We (ESS) to generate the individual subsets. For larg8NP
want to pack each integer into a bin so that the sum of the s much faster than (Moffitt 2013), but for smai| (Mof-
integers packed into each bin does not exceed the capacityfitt 2013) is faster. We also propose a hybrid combination
¢, while minimizing the number of bins used. The only dif-  of these two algorithms that achieves the performance of the
ference between number partitioning and bin packing is that faster algorithm, as a function afandk.
number partitioning fixes the number of subsets or bins, and  Number partitioning and bin packing are closely related,
minimizes the needed capacity, while bin packing fixes the and we consider them different variations of the same prob-
capacity and minimizes the number of bins. lem. In the operations research community, number parti-

While all NP-complete problems are polynomially re-  tioning is solved by repeated applications of bin packing,
ducible to each other, the close relationship between num- performing a binary search over a range of bin capacities.
ber partitioning and bin-packing means that algorithms for |n our experiments, this approach is much slower than our
one are often directly applicable to the other. For example, hybrid algorithm for up to nine subsets, but perfoms compa-

the usual way to solve a bin-packing problem is to first run
an polynomial-time approximation algorithm, such as best-

rably for ten subsets, and may be faster with more subsets.
All the algorithms discussed here are anytime algorithms,

fit decreasing, to get an upper bound on the number of bins meaning that they return an approximate solution almost im-
needed. Then reduce the number of bins by one with each mediately, and then continue to find better solutions, even-

iteration, until all the items can no longer be packed into
the given number of bins, or a lower bound on the num-

tually finding, and still later verifying, an optimal soloti.
Thus, on problems that are too large to be solved optimally,

ber of bins is reached, such as the sum of all the integers, they can run for as long as time is available, returning the

divided by the number of bins, rounded up. Almost all bin-
packing instances can be solved this way in just a few iter-

ations. Since each of these iterations has a fixed number of

bins, they can be solved by a number partitioning algorithm,
where the bin capacity is fixed, and which terminates when
it either succeeds or fails to achieve a partition whosedlsirg
subset sum doesn’t exceed the bin capacity.

Similarly, any bin-packing algorithm can be used to op-
timally solve number partitioning as follows. First, run
a polynomial-time heuristic, such as the Karmarkar-Karp

best solution found in that time.
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