A Threshold of In n for Approximating Set Cover

URIEL FEIGE

The Weizmann Institute, Rehovot, Israel

Abstract. Given a collection F of subsets of S = {1, ..., n}, set cover is the problem of selecting as
few as possible subsets from & such that their union covers S, and max k-cover is the problem of
selecting k subsets from &% such that their union has maximum cardinality. Both these problems are
NP-hard. We prove that (1 — o(1)) In n is a threshold below which set cover cannot be
approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap
(up to low-order terms) between the ratio of approximation achievable by the greedy algorithm
(which is (1 — o(1)) In n), and previous results of Lund and Yannakakis, that showed hardness of
approximation within a ratio of (log, n)/2 = 0.72 In n. For max k-cover, we show an approximation
threshold of (1 — 1/e) (up to low-order terms), under the assumption that P # NP.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Computations on discrete structures

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Approximation ratio, set cover

1. Introduction

Let S be a set of n points and F = {S,, S,, ..., S,} a collection of subsets of S.
Set cover is the problem of selecting as few as possible subsets from & such that
every point in S is contained in at least one of the selected subsets. Max k-cover
is the problem of selecting k£ subsets from ¥ such that their union contains as
many points as possible. Both these problems are NP-hard. A common approach
of coping with NP-hard problems is by approximation algorithms that run in
polynomial time and deliver solutions that are close to optimal. For set cover, we
evaluate an approximation algorithm by considering the ratio between the
number of subsets used in the cover output by the algorithm and the number of
subsets used by the optimal solution. This ratio is always at least one, and the
largest value that it can attain on an input instance is the approximation ratio of
the algorithm. For max k-cover, we consider the ratio between the number of
points covered by the k subsets selected by the algorithm and the number of

The author is the incumbent of the Joseph and Celia Reskin Career Development Chair.

Author’s present address: Department of Applied Math. and Computer Science, The Weizmann
Institute, Rehovot 76100, Israel; e-mail: feige@wisdom.weizmann.ac.il

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1998 ACM 0004-5411/98/0700-0634 $05.00

Journal of the ACM, Vol. 45, No. 4, July 1998, pp. 634-652.

A Threshold of In n for Approximating Set Cover 635

points covered by the optimal solution. This ratio is always at most one, and the
smallest value that it can attain on an input instance is the approximation ratio of
the algorithm. (Slightly extending the class of algorithms of interest, we also
allow for randomized polynomial time algorithms, in which case we want the
solution output by the algorithm to be close to optimal with high probability,
where probability is computed over the coin tosses of the randomized algorithm.)
It is well known that set cover can be approximated within a ratio of In n, where
In denotes the natural logarithm, and that max k-cover can be approximated
within a ratio of 1 — 1/e = 0.632. The results and techniques in Arora et al.
[1992] and Papadimitriou and Yannakakis [1991] imply that there is a constant &
< 1 such that it is NP-hard to approximate max k-cover within a ration better
than 8. Lund and Yannakakis [1994] showed (under a complexity assumption
that will be presented in Section 1.1) that it is hard to approximate set cover
within a ratio of (log n)/2, where log denotes logarithms in base 2. We extend
these hardness results, and show that for any € > 0, set cover cannot be
approximated within a ratio of (1 — €) In n unless NP has n?(° 198 ™) _time
deterministic algorithms, and that max k-cover cannot be approximated within a
ratio of 1 — 1/e + € unless P = NP. This implies that known approximation
algorithms for these problems are essentially best possible in terms of the
approximation ratios that they guarantee. In all instances of set cover and max
k-cover that we construct, s (the number of subsets) is smaller than n (the
number of points). Our results are based on a reduction from a new multi-prover
proof system for NP (see Section 2), designed specifically for this purpose. Our
proof technique extends that of Lund and Yannakakis [1994].

1.1. RELATED WORK. Set cover was among the first problems for which
approximation algorithms were analyzed. Johnson [1974] showed that the greedy
algorithm gives an approximation ratio of In n. (This was extended by Chvatal
[1979] to the weighted version of set cover.) Lovasz [1975] showed that a linear
programming relaxation approximates set cover within a ratio of In n. In both
cases, the authors were interested mainly in the leading term of the approxima-
tion ratio. Analysis of the low-order terms of the approximation ratio was
provided by Srinivasan [1995] (for the linear programming approach) and by
Slavik [1996] (for the greedy algorithm). For max k-cover, the greedy algorithm
gives an approximation ratio of 1 — 1/e (up to low order terms). See Hochbaum
[1997] and references therein, and also Proposition 5.1. (A similar approximation
ratio can be obtained via a linear programming relaxation, though the author is
not aware of an explicit reference for this.)

The first hardness of approximation results for set cover followed from work
on probabilistically checkable proof systems (PCPs). The notion of PCPs grew
out of the theory of interactive proofs' (parts of which we will review shortly) and
from major breakthroughs in understanding their power [Lund et al. 1992;
Shamir 1992; Babai et al. 1991]. The relevance of interactive proofs for proving
hardness of approximation results was demonstrated in Feige et al. [1996], and
further developments in Arora and Safra [1998] and Arora et al. [1992] led to the
PCP notion as stated below. Informally, a PCP for an NP language is a method of

! See, for example, Goldwasser et al. [1989], Babai and Moran [1988], Ben-Or et al. [1988], and
Fortnow et al. [1994].

636 URIEL FEIGE

encoding NP witnesses, coupled with a verifier-a very efficient randomized
method for verifying the validity of the witness. For any instance of the input
language, the verifier reads only a constant number of bits from the correspond-
ing PCP witness. The indices of these bits depend on random coin tosses of the
verifier and on the input instance. The verifier accepts or rejects based on a
simple predicate evaluated on these bits. If the input instance is in the NP
language, then there is a way of encoding the PCP witness such that regardless of
the bits read by the verifier, the verifier accepts. If the input instance is not in the
NP language, then any string given as a PCP witness will be accepted by the
verifier with probability at most 1/2 (probability taken over the coin tosses of the
verifier). The gap between the probabilities that the verifier accepts inputs in the
NP-language and inputs not in the NP-language is a key property that makes
PCPs useful in proving hardness of approximation results.

As shown by Arora et al. [1992] the above PCP characterization of NP-
languages (the “PCP theorem”) is equivalent to the statement that it is NP-hard
to approximate MAX 3SAT, meaning that for some & < 1, it is NP hard to
distinguish between satisfiable 3CNF formulas and 3CNF formulas in which at
most a &-fraction of the clauses can be satisfied. This immediately implies
constant factor hardness of approximation results for a variety of other prob-
lems—all those that are MAX SNP-hard [Papadimitriou et al. 1991]. One of
these problems is minimum vertex cover in bounded degree graphs, that is,
selecting as few as possible vertices in a graph of bounded degree such that, for
each edge, at least one of its endpoints is selected. As vertex cover is a special
case of set cover, this implies that for some € > 0 it is NP-hard to approximate
set cover within a ratio of 1 + e. Using the fact that the graph is of bounded
degree, one can also show that it is NP-hard to approximate max k-cover within a
ratioof 1 — e

To present subsequent hardness of approximation results, we let TIME(¢)
denote the class of languages that have a deterministic algorithm that runs in
time ¢, and let ZTIME(#) denote the class of languages that have a probabilistic
algorithm that runs in expected time ¢ (with zero error). We shall ignore
low-order terms in the approximation ratios presented below.

Lund and Yannakakis [1994] showed that set cover cannot be approximated
within a ratio of log n/4 unless NP C TIME(n?®°¥°¢ M) and that set cover
cannot be approximated within a ratio of log /2 unless NP C ZTIME (n®®°»°e m),
Their proof was based on a reduction from efficient two prover proof systems for
NP [1988]. For our purposes, a two-prover proof system can be described as a
PCP with some special properties. The alphabet in which the PCP witness is
encoded is no longer binary, and its cardinality may depend on the input size.
The PCP witness is partitioned into two segments. The verifier reads one
character from each segment (the choice of which character to read is based on
the input instance and on random coin tosses of the verifier), and accepts or
rejects based on a predicate evaluated on the two characters. More generally,
one may view k-prover proof systems as PCPs in which the PCP witness is
partitioned into k segments, and the verifier reads one character from each
segment. In the terminology of multiprover proof systems [Ben-Or et al. 1988],
each segment of the PCP witness is thought of as being controlled by one prover.
The contents of the segment are called the strategy of the prover. Reading a
character from a segment corresponds to the verifier querying the respective

A Threshold of In n for Approximating Set Cover 637

prover as to the value of the indexed character, and the prover responding with
the value of the requested character. As each prover is queried only once, our
description corresponds to one round multiprover proof systems. More general
multiround proof systems are also described in Ben-Or et al. [1988], but are
beyond the scope of the current paper.

Lund and Yannakakis obtained their hardness results for approximating set
cover under complexity assumptions that are stronger than P # NP. In order to
get hardness results under weaker complexity assumptions, subsequent work
focused on reducing the probability of falsely accepting in a multiprover proof
system (this probability is known as the error of the proof system), while
maintaining small values for other parameters such as the number of provers, the
cardinality of the alphabet and the number of random bits used by the verifier.
Bellare et al. [1993] constructed four prover proof systems that implied that
unless P = NP set cover cannot be approximated within any constant ratio, and
unless NP C TIME (n©(°21°¢™) then set cover cannot be approximated within a
ratio of log n/8. Improved analysis of two prover proof systems by Raz [1995]
implies that unless NP C TIME (n©(°8'°2™)) then set cover cannot be approx-
imated within a ratio of log n/4, and that unless NP C ZTIME (n®(°goem)
then set cover cannot be approximated within a ratio of log n/2.

Improved deterministic constructions by Naor et al. [1995] closed the gap (up
to low-order terms) between the consequences achievable under the assumption
that NP is not contained in a deterministic time class and the assumption that NP
is not contained in a probabilistic time class. It follows that unless NP C
TIME (n®(°8'°¢ M) then set cover cannot be approximated within a ratio of log n/2.

In our work, we close the gap between the known In n approximation ratio and
the hardness result of log n/2. We show that the upper bound is tight (up to
low-order terms) under the assumption that NP ¢ TIME (n©(°gloem)),

There are only few NP optimization problems that are known to have a
threshold of nontrivial nature (e.g., not located at approximation ratio 1). A very
sharp example is the minimum p-center problem, for which Hsu and Nemhauser
[1979] showed that it is NP-hard to obtain approximation ratios below 2, whereas
Hochbaum and Shmoys [1985], and Dyer and Frieze [1985], showed how to
approximate minimum p-center within a factor of 2. For the minimum maximal
independent set problem, Halldorsson [1993] shows that it cannot be approxi-
mated within a ratio of n' ~€, for any € > 0, which is tight up to multiplicative
low-order terms. Another example of a well characterized approximation prob-
lem is presented in Hastad et al. [1993]. Our work shows that also set cover and
max k-cover have a threshold of a nontrivial nature. This can be extended to
other problems as well, as the same threshold of In n holds for all problems that
are equivalent to set cover in terms of approximation ratio, such as dominating
set (see Paz and Moran [1981] and Lund and Yannakakis [1994] for more
details).

A survey of hardness of approximation results and the techniques involved is
provided by Arora and Lund [1997].

1.1.1. Remark. A preliminary version of this paper, without the results on
max k-cover, appeared in the Proceedings of the 28th Annual ACM Symposium on
the Theory of Computing in 1996. Since then, several other thresholds for
approximation were discovered. Essentially tight O(n'~€) hardness of approxi-

638 URIEL FEIGE

mation results where obtained for clique and independent set [Héstad 1996], and
for chromatic number [Feige and Kilian 1996]. Tight constant factor hardness of
approximation results were obtained for several problems in Hastad [1997],
including a threshold of 7/8 for MAX 3SAT. As for set cover, Raz and Safra
[1997] constructed new low error constant prover proof systems and used them to
show that for some constant ¢ > 0, it is NP-hard to approximate set cover within
a ratio of ¢ log n. It is not known whether hardness of approximating set cover
within a ratio of In n (up to low order terms) can be shown under the assumption
that P # NP, rather than NP ¢ TIME (n®Ucg!0em),

1.2. OVvERVIEW. We give a high level overview of the main ideas in our proof
that set cover is hard to approximate within a ratio of In n. The proof that max
k-cover is hard to approximate within a ratio of 1 — 1/e is based on similar
ideas.

The proof of Lund and Yannakakis involves a combinatorial construction, and
a reduction from two prover proof systems to set cover which uses the combina-
torial construction. The ratio of log n/2 comes up from the following construc-
tion. There is a set S of m points, and a collection & of subsets of S and their
complements, each of size m/2. A good way of covering S is by taking a subset
and its complement, thus using only two subsets. The combinatorial construction
is such that any bad cover of § that does not include a subset and its complement
must use at least roughly log m subsets from %. Hence the ratio between the
good case and the bad case is log m/2. We remark that a combinatorial
construction with properties as described above is easy to come by: standard
probabilistic arguments show that if the subsets in & are chosen at random, then
with high probability every bad cover requires at least roughly log m subsets, as
desired. Lund and Yannakakis showed how to reduce two prover proof systems
for satisfiability of a formula ¢ to a collection of sets as described above, such
that if ¢ is satisfiable, all sets are covered by the good way, and if ¢ is not
satisfiable, most sets need to be covered by the bad way.

To prove a In n ratio, we consider a modified construction which we call a
partition system. There is a set S of m points, and a collection F of subsets of §,
each of size m/k, where k is a large constant. Each subset is associated with k& —
1 other pairwise disjoint subsets of size m/k that together partition § into k equal
parts. A good cover of S by disjoint subsets requires only k subsets. A bad cover
needs roughly d subsets (not belonging to the same partition) in order to cover
S, where (1 — 1/k)? = 1/m. As k grows, d tends to k In m. The ratio between
the two cases approaches In m, as desired. Again, a construction based on
random subsets of size m/k will with high probability have properties as
described above.

To make use of the above setting, we design a new k-prover proof system for
satisfiability. We remark that already in Bellare et al. [1993] hardness results for
set cover were proved using k-prover proof system, where k& = 4. However, these
hardness results gave poorer bounds on the ratio of approximation than those
obtainable from two prover proof systems. The reason why we obtain stronger
bounds is that we introduce a new ingredient into k-prover proof systems-that of
having two different acceptance predicates, a strong acceptance predicate, and a
weak acceptance predicate. In our proof system, the difference between the case
when ¢ is satisfiable and the case when ¢ is not satisfiable is not only in the

A Threshold of In n for Approximating Set Cover 639

acceptance probability, but also in the acceptance predicate. If ¢ is satisfiable,
the provers have a strategy that always satisfies the strong acceptance predicate
(and hence also the weak one). If ¢ is not satisfiable, then any strategy of the
provers satisfies the weak acceptance predicate on only a small fraction of the
possible queries of the verifier. The gap that we obtain for approximating set
cover is due in part to the difference in acceptance probability between the cases
that ¢ is satisfiable and ¢ is not satisfiable, and in part to the difference in
acceptance predicate.

In Section 2, we describe our k-prover proof system. It is fortunate that we can
invoke a recent theorem of Raz [1995] regarding reduction of error by parallel
repetition. In contrast, Lund and Yannakakis used the more complicated two-
prover proof system of Feige and Lovasz [1992] (the result of Raz [1995] was not
available at the time), without actually describing it.

In Section 3, we explain how to construct the partition systems mentioned
above. In Section 4, we describe the reduction from our k-prover proof system to
set cover. In Section 5, we show that max k-cover has an approximation threshold
at 1 — 1/e under the assumption that P # NP. In Section 6, we analyze the
low-order terms for hardness of approximation for set cover. Under the assump-
tion that NP ¢ ZTIME(2"") for some n > 0, we show that set cover cannot be
approximated within In n — ¢(In In n)?, for some constant ¢ that depends on 7.

2. A Multiprover Proof System

Our result is based on a reduction from a multi-prover proof system. In Section
2.1, we describe the NP-hard problem MAX 3SAT-5 for which we construct the
multiprover proof system. This specific problem has a regular structure that will
later be used in proving the hardness of approximating set cover. In Section 2.2,
we use standard techniques to construct a low-error two-prover proof system for
MAX 3SAT-5. In Section 2.3, we construct our k-prover proof system for MAX
3SAT-5. This proof system has the new feature of having two different accep-
tance predicates, which is used in proving the hardness of approximating set
cover. We remark that the two-prover proof system of Section 2.2 is presented
only so as to provide intuition and help in the analysis of the final k-prover proof
system, and is not used elsewhere in our paper.

2.1. THE UNDERLYING NP-COMPLETE LANGUAGE. Our starting point is the
problem of MAX 3SAT-B.

Input. A CNF formula with n variables in which every clause contains at most
three literals (a literal is a Boolean variable in either positive or negated form),
and every variable appears in a bounded number of clauses.

Output. The maximum number of clauses that can be satisfied simultaneously
by some assignment to the variables.

The following well-known theorem appears in Arora et al. [1992] and Papad-
imitriou and Yannakakis [1991].

THEOREM 2.1.1. It is MAX-SNP hard to approximate MAX 3SAT-B: for some
€ > 0, it is NP-hard to distinguish between satisfiable 3CNF-B formulas, and
3CNF-B formulas in which at most an (1 — e€)-fraction of the clauses can be
satisfied simultaneously.

640 URIEL FEIGE

We would like to work with 3CNF-B formulas that have a very regular
structure, and hence define the problem of MAX 3SAT-5.

Input. A CNF formula with n variables and 5n/3 clauses, in which every clause
contains exactly three literals, every variable appears in exactly five clauses, and a
variable does not appear in a clause more than once.

Output. The maximum number of clauses that can be satisfied simultaneously
by some assignment to the variables.

ProrosITION 2.1.2. For some € > 0, it is NP-hard to distinguish between
satisfiable 3CNF-5 formulas, and 3CNF-5 formulas in which at most a (1 —
€)-fraction of the clauses can be satisfied simultaneously.

ProoF. The proof uses known techniques, and is only sketched below. It is
based on the hardness of approximating MAX 3SAT-B (Theorem 2.1.1). We
change an arbitrary 3CNF-B formula ¢ to a new 3CNF-5 formula ¢ (on a
different set of variables).

Consider any variable x and let b be the number of occurrences of x in . b is
bounded from above by some universal constant, and without loss of generality,
we also assume that b = 2. Replace each occurrence of x by a fresh variable x;,
for 0 =i = b — 1, and add the 2b clauses (x; OX,;), (¥; Ox;,.,), where i +
1 is computed mod b. These clauses are satisfied only if x; = x; ., for every i.
Now each variable appears exactly 5 times, and no variable appears more than
once in the same clause. For clauses that are shorter than three, add a fresh
dummy literal y, and add the following clauses with additional dummy variables
zyand z,: (y Oz, Oz,), (y Oz, Oz,), (y Oz, 0Z,), and (y Oz, OZ,). These
clauses are satisfied only if y = 1, in which case y has no influence on the
original clause to which it was added. Add a constant number of additional
dummy variables w; so that the total number of variables (of the types x;, y;, z;,
and w;) is divisible by 3, and add dummy 3-CNF clauses that contain distinct
dummy variables z; and w; in positive form, until each dummy variable occurs
exactly five times.

The above reduction has the following properties (proof left to the reader):

(1) The reduction takes polynomial time.
(2) If ¢ is satisfiable then so is ¢.

(3) The number of clauses increases by at most a constant multiplicative factor.
(This is a consequence of the fact that each clause in ¢ is of bounded length).

(4) The number of unsatisfiable clauses decreases by at most a constant multi-
plicative factor. (This is a consequence of the fact that each variable appears
a bounded number of times in ¢.)

Properties (3) and (4) above imply that if a é-fraction of the causes of ¢ are
not satisfiable, then an e-fraction of the clauses of ¢ are not satisfiable, for some
€ that depends on 6. Hence, if one could distinguish in polynomial time between
satisfiable 3CNF-5 formulas and 3CNF-5 formulas in which at most a (1 —
€)-fraction of the clauses can be satisfied simultaneously, then one could
distinguish in polynomial time between satisfiable 3CNF-B formulas and 3CNF-B
formulas in which at most a (1 — &)-fraction of the clauses can be satisfied
simultaneously. [J

A Threshold of In n for Approximating Set Cover 641

Following the NP-hardness result of Proposition 2.1.2, we shall assume that the
input to the multiprover proof systems that we construct is either a satisfiable
3CNF-5 formula (a frue input), or a 3CNF-5 formula in which every assignment
to the variables fails to satisfy an e-fraction of the clauses, for some universal
constant € > 0 (a false input).

2.2. A Two-PROVER PROOF SYSTEM FOR MAX 3SAT-5. Using known tech-
niques, we construct a one-round two-prover proof system for 3SAT-5. In our
two-prover proof system, the first prover receives as a query the index of a
clause, and returns as an answer a sequence of three bits (i.e., a value between 0
and 7). These three bits can be viewed as Boolean assignments to the three
variables of the clause. The second prover receives as a query the index of a
variable, and returns one bit as an answer. This bit can be viewed as a Boolean
assignment to the variable. The verification procedure is as follows. The verifier
selects an index of a clause at random, sends it to the first prover, and selects a
random variable in the clause, and sends its index to the second prover. The
verifier interprets the reply of the first prover as an assignment to the three
variables in the clause, and the reply of the second prover as an assignment to
the variable selected from the clause. The verifier accepts if the following two
conditions hold:

(1) Clause check. The assignment sent by the first prover satisfies the clause.

(2) Consistency check. The assignment sent by the second prover is identical to the
assignment for the same variable sent by the first prover.

PropoOSITION 2.2.1. Let ¢ be a 3CNF-5 formula and let € be the fraction of
unsatisfied clauses in the assignment to the variables that satisfies the largest number
of clauses. Then under the optimal strategy of the provers, the verifier in the above
two prover proof system accepts with probability (1 — €/3).

ProoOF. To see that regardless of the strategy of the provers the acceptance
probability is at most (1 — €/3), observe that the strategy of the second prover
defines an assignment y to the variables of ¢. When the verifier selects a clause
that is not satisfied by x (this happens with probability at least €), then in order
to pass the clause check, the first prover must set at least one of the three
variables differently from y, and then the consistency check fails with probability
at least 1/3.

A strategy that guarantees acceptance probability of at least (1 — €/3) is to let
x be an assignment that satisfies a (1 — €)-fraction of the clauses, and to have the
first prover set exactly one variable differently from x for clauses not satisfied by
x- O

The probability of accepting a false input is known as the error of the
two-prover proof system. For the above two-prover proof system, the error may
be as high as 1 — €/3. We now modify our construction so as to substantially
lower the error. This is done via a method known as parallel repetition. Rather
than choose at random one clause, the verifier chooses at random € clauses (the
value of ¢ will be determined later). The indices of these € clauses are sent to the
first prover, who now replies with a sequence of 3¢ bits. From each clause, the
verifier chooses at random one variable, and sends the indices of the € variables
to the second prover. The second prover replies with a sequence of ¢ bits. The

642 URIEL FEIGE

verifier interprets the sequence of bits sent by the first prover as an assignment
to the 3{ variables that appear in the € random clauses, and interprets the
sequence of bits sent by the second prover as an assignment to the € variables
that were queried of the second prover. The verifier accepts if the following two
conditions hold for every one of the ¢ clauses: the assignment sent by the first
prover satisfies the clause, and the assignment sent by the second prover is
identical to the assignment for the same variable sent by the first prover. Hence
from the point of view of the verifier, the new proof system is composed of ¢
parallel repetitions of the original proof system, where each repetition uses fresh
random bits. As the verifier accepts in the modified proof system only if all
repetitions are accepting, it is natural to expect that the error of the modified
proof system will be at most (1 — ¢/3)‘. Unfortunately, this is in general not true,
due to subtle reasons that are best explained by explicit counterexamples
[Fortnow et al. 1994]. However, it is true that parallel repetition reduces the
error at an exponential rate. The following theorem was proven by Raz [1995].

THEOREM 2.2.2. If a one-round two-prover proof system is repeated € times
independently in parallel, then the error is 2, where ¢ > 0 is a constant that
depends only on the error of the original proof system (assuming this error was less
than one) and on the length of the answers of the provers in the original proof
system.

As the error in our original two-prover proof system was a constant (1 — €/3)
that is independent of n, and the answer length was also a constant (three for the
first prover, one for the second prover), it follows from Theorem 2.2.2 that the
error of our modified two-prover proof system is at most 2~ ¢, for some
universal constant c.

2.3. THE k-PROVER PROOF SYSTEM. We are now ready to describe our
k-prover proof system for MAX 3SAT-5 which has the nonstandard feature of
two different acceptance predicates. For reasons of efficiency in the construction,
we consider a binary code that contains k code words, each of length € and
weight €/2, and Hamming distance at least £/3 between any two code words. For
our main result we shall choose ¢ = ©O(log log n) and k an arbitrarily large
constant. In this case, assuming without loss of generality that € is an exact power
of 2 and that k < £, the rows of a Hadamard matrix give a code with the desired
properties (in fact, with Hamming distance €/2). For refined results (see Section
6), it is useful to choose k > ¢, and use some other standard code instead of the
Hadamard code.

In our k-prover proof system, the verifier selects € clauses uniformly and
independently at random. Call these clauses Cy, ..., C,. From each clause, the
verifier selects a single variable uniformly and independently at random. These
are called the distinguished variables x, ..., x,. (So far, this is identical to the
modified two-prover proof system.) With each prover, the verifier associates a
code word. Prover P; receives C; for those coordinates j in its code word that
have the bit 1, and x; for those coordinates in its code word that have the bit 0.
Each prover replies with a string of 2¢ bits. This string is interpreted by the
verifier as an assignment to all the variables that the prover received (¢/2
distinguished variables plus three variables in each of the ¢/2 clauses). For
simplicity in describing the acceptance predicate, we assume that for each of the
€/2 clauses received by the prover, the corresponding bits in the prover’s answer

A Threshold of In n for Approximating Set Cover 643

encode a satisfying assignment for that clause. (This assumption is without loss of
generality, as whenever it does not hold, the verifier may simply complement the
first of the three bits that correspond to the variables of the unsatisfied clause,
thereby obtaining a canonical reply that satisfies the clause.) Hence, in this
k-prover proof system, the acceptance predicates need not involve clause checks,
and will only involve consistency checks.

Observe that the answer of a prover induces an assignment to the distinguished
variables. (Namely, if on the respective coordinate the answer gives an assign-
ment to all three variables in the clause rather than an assignment just to the
distinguished variable, remove the assignment for the other two variables. If the
same variable appears several times in the sequence of distinguished variables,
different occurrences of the same variable may receive different assignments.)
We say that the answers of two provers are consistent if the induced assignments
to the distinguished variables is identical.

We can now describe our acceptance predicates:

—Weak acceptance predicate. At least one pair of provers is consistent.

—Strong acceptance predicate. Every pair of provers is consistent.

LEMMA 2.3.1. Consider the k-prover proof system defined above and a 3CNF-5
formula ¢. If ¢ is satisfiable, then the provers have a strategy that causes the verifier
to always strongly accept. If at most a (1 — e)-fraction of the clauses in ¢ are
simultaneously satisfiable, then the verifier weakly accepts with probability at most
k? - 27, where ¢ > 0 is a constant that depends only on e.

Proor. If ¢ is satisfiable, then the provers can base their answers on a
canonical satisfying assignment (e.g., on the lexicographically first such assign-
ment). Then all clauses are satisfied and the answers of all provers are mutually
consistent.

We now consider the case in which only a (1 — €)-fraction of the clauses of ¢
are satisfiable. Assume that the verifier weakly accepts with probability at least 8.
Then with respect to two of the provers, the verifier accepts with probability at
least 8/k>. By the property of the code, there are at least £/6 coordinates on
which one of these provers receives a clause, and the other prover receives a
variable in this clause. Fix the question pairs in the other 5€/6 coordinates in a
way that maximizes the acceptance probability, which by averaging remains at
least 8/k?. Now omit the questions on these 5¢/6 coordinates (the provers can
reconstruct them anyway). It follows that the two provers have a strategy that
succeeds with probability at least 8/k? on ¢/6 parallel repetitions of the original
two-prover proof system. From Theorem 2.2.2, §/k* < 27<¢. [

3. Construction of Partition Systems

Definition 3.1. A partition system B(m, L, k, d) has the following properties.

(1) There is a ground set B of m points.
(2) There is a collection of L distinct partitions py, ..., p.-

(3) For 1 =i = L, partition p, is a collection of k disjoint subsets of B whose
union is B.

644 URIEL FEIGE

(4) Any cover of the m points by subsets that appear in pairwise different
partitions requires at least d subsets.

LeEmMMA 3.2. For every ¢ = 0 and m sufficiently large there is a partition system
B(m, L, k, d) whose parameters satisfy the following inequalities:

(1) L = (log m)“.
(2) k can be chosen arbitrarily as long as k < In m/3 In In m.
(3) d = (1 — f(k))k In m, where f(k) — 0 as k — .

A partition system with parameters as described above and f(k) = 2/k can be
constructed ZTIME(m©{¢ ™)),

Proor. Consider the following randomized construction for B(m, L, k, d).

For each point in the set B, for each partition p;, decide independently at random
in which subset of the partition to place the point.

We show that with high probability d subsets, each belonging to a different
partition, cannot cover the set B (for parameters as in the lemma). Consider a
particular choice of d subsets, no two of which belong to the same partition.
Then the probability for a point to be covered by at least one of the d subsets is
1 — ((k — 1)/k)%. Using (1 — 1/k)* > exp'7V0 (for k = 2), and (1 +
1/k)(1 — 2/k) < (1 — 1/k), this probability is at most 1 — m ' "1/¥ As there
are m points, the probability that all m points are covered by the same d subsets
is (1 — m~ "y < oxpC™) There are k(4) < L ways of choosing the
subsets (the inequality holds since d >> k). Substituting L = (log m)“ and d <
k In m, the probability that some collection of d subsets covers all points is at
most (log m)k I meyp (= !) For k < In m/3In In m and m sufficiently large,
this probability tends to 0, proving that the probabilistic construction works.

The randomized construction described above requires time polynomial in m,
and succeeds with probability at least 1/2. Exhaustively checking that the
construction indeed gives a partition system can be done in time roughly (“¥) <
m@U°¢ ™) The expected number of times the randomized construction needs to
be tried until it succeeds is less than 2. [J]

The randomized construction can be replaced by a deterministic construction
using techniques developed in Naor et al. [1995]. There, partition systems are
called anti-universal sets. Theorem 9 in Naor et al. [1995] says that for any k£ one
can in time linear in m construct a partition system for which m = (k/
(k—1)) ‘qOoe Dlog L. (Here k is assumed to be an arbitrary constant, and m
grows as a function of L and d.) Expressing the ratio d/k as a function of mn one
gets (1 — f(k)) In m, where f(k) — 0 as k — o, provided that d is sufficiently
large as a function of k£, and L is bounded by a polynomial in d. This will hold
when we use partition systems in Section 4. (The reader may use the following
table to translate from our notation to that of Naor et al. [1995]: a point in set
B — a function & in collection H, m — |H|, L - n, k — b, d — k.)

4. The Reduction to Set Cover
Our reduction extends that of Lund and Yannakakis [1994].

A Threshold of In n for Approximating Set Cover 645

The verifier of the k-prover proof system of Section 2.3 uses its randomness,
which we assume that is given in form of a random string r, to select € clauses
and a distinguished variable in each clause. We call these € distinguished
variables the sequence of distinguished variables. The length of the random string
is (log 5n/3 + log 3)¢ = € log 5n. Let R = (5n)" denote the number of possible
random strings for the verifier. With each random string r, we associate a distinct
partition system B,(m, L, k, d) as in Lemma 3.2, where L = 2°, m = n®,
and d = (1 — f(k))k In m. (Altogether there are N = mR points in our set
cover problem.) Each of the L partitions is labeled by an €-bit string p, that
corresponds to an assignment to the respective sequence of distinguished
variables. Each subset in a partition is labeled by a unique prover i. We let B(r,
j, i) denote the ith subset of partition j in partition system r. With each
question-answer pair (g, a) of prover P;, where 1 < i =< k, we associate a subset
S (q.a.iy as follows: (Remark: The notation S, , ;) is somewhat redundant, but is
used for clarity. The index i of the prover can be deduced from the syntax of (g,
a) by observing which coordinates have clauses and which have variables.) We
use the notation (g, i) € r to say that on random string r, prover P; receives
question g. For r such that (g, i) € r, consider the induced sequence of
distinguished variables, and extract from a on a coordinate by coordinate basis
an assignment a, to this sequence of variables. One of the partitions of partition
system B,(m, L, k, d) has label a,. The subset S, , ;) contains the points of
subset B(r, a,, i), for all r with (g, i) € r.

Let O denote the number of possible different questions that a prover may
receive. A question to a single prover includes €/2 variables, for which there are
n‘’? possibilities (with repetition), and €/2 clauses, for which there are (51/3)"?
possibilities. Hence, Q = n*/? - (51/3)“2. Observe that this number is the same
for all provers.

LEMMA 4.1. If ¢ is satisfiable, then the above set of N = mR points can be
covered by kQ subsets. If only a (1 — €) fraction of the clauses in ¢ are
simultaneously satisfiable, the above set requires (1 — 2f(k))kQ In m subsets in order
to be covered, where f(k) — 0 as k — o.

Proor. If ¢ is satisfiable, consider a satistying assignment A for ¢, and fix for
the provers the strategy of answering each question consistently with this
satisfying assignment. Now consider the subsets S, , ;), for which a is indeed the
answer given by prover P; on question g under the above strategy. For any r,
consider only the subsets S, 4 1y S(g,a,2)s « + - » S(grak) Where for 1 =i =k,
(q:» 1) € r, and qa; is the answer given by prover P; on this question under the
strategy described above. Then the partition system B,(m, L, k, d) is completely
covered by these k sets S, ,.;), since for the partition whose label p agrees with
assignment A, the ith such set contains subset B(r, p, i), for every i. A similar
argument applies for every r. Hence, the collection of subsets described above
covers all points. The number of subsets used in k times the number of possible
questions to a single prover. Interestingly, the kQ subsets used in the cover
happen to be disjoint.

If only a (1 — e)-fraction of the clauses in ¢ are simultaneously satisfiable,
then, by Lemma 2.3.1, any strategy of the provers (weakly) succeeds with
probability at most k% - 27, Assume a cover of size (1 — 8)k/Q In m, where
8 = 2f(k), and derive a contradiction.

646 URIEL FEIGE

Let 6 be a collection of subsets that covers S, where |€¢| = (1 — §)kQ In m.
With each question g to a prover P; associate a weight w, ; equal to the number
of answers a such that S, ,; € €. Hence, 2, w,; = [€|. With each random
string r associate a weight w, = X, ;)c, w, ;. This weight is equal to the number
of subsets that participate in covering the m points of B.(m, L, k, d). Call r
good it w, < (1 — 8/2)k In m.

PROPOSITION 4.2. The fraction of good r is at least /2.

PROOF. Assume otherwise. Then =, w, = (1 — 8/2)*%R Inm > (1 — 8)kR
In m, where R denotes the number of possible random strings of the verifier. On
the other hand,

Swe3 S wi= 3wl
W, = Wqi = T Wei T)
r r (q,i)Er q.i Q Q

where the middle equality follows from the fact that there are exactly R/Q
random strings that cause the verifier to send out question ¢g. Hence, |6]| > (1 —
8)kQ In m. Contradiction. [J

PROPOSITION 4.3. Let € be a collection of subsets that covers S, where |6| =
(1 — 8)kQ In m. Then for some strategy for the k provers, the verifier accepts ¢ with
probability at least 28/(k In m)>.

ProOF. Based on 6, we describe a randomized strategy for the k£ provers. On
question g addressed to prover P;, prover P; selects an answer a uniformly at
random from the set of answers that satisty S, , ;, € 6. We show that under this
strategy for the provers, the verifier weakly accepts with probability at least 28/(k
In m)?, where this probability is taken over the joint distribution of the coin
tosses of the provers and of the verifier. Clearly, by fixing the optimal coin tosses
for the provers, one obtains a deterministic strategy for the provers that satisfies
the weak acceptance predicate with a probability that is at least as high.

Observe that for a fixed r, there is a one to one correspondence between sets
B(r, p, i) that participate in the cover of B,(m, L, k, d) and sets S, , ;, that
belong to 6. For this correspondence we need (g, i) € r and the projection of a
on the sequence of distinguished variables to be p.

Concentrate now only on good r, and compute a lower bound on the
probability that the verifier accepts when he chooses a good r. Observe that by
Property (4) of partition systems, and by the fact that for good r the respective
B,(m, L, k, d) is covered by at most (1 — 6/2)kln m subsets, the cover ¢ must
have used two subsets from the same partition p in the cover of B,.(m, L, k, d)
(by our choice of 6 = 2f(k)). Denote these two subsets by B(r, p, i) and B(r, p, j),
where i # j, and their corresponding subsets in € by S, , ,, and S(q i)
respectively. Consider what happens when the verifier chooses random strlng r.
Prover P; then receives question g; and prover P; receives question g;. Let 4, ;
denote the set of answers satisfying a € A4, ; if and only if S, , ;) € €. Define
A, ; in an analogous manner. By the strategy described above, prover P; selects
an answer a € A4, ; at random (and P; selects a € A, ;). Observe that for a, and
a; above, a; € A,; and a; € A4, ;, and furthermore, for good r, |4, ;| + |4, ;| <
k In m. Hence, the joint probability that the provers choose to answer with a;

A Threshold of In n for Approximating Set Cover 647

and a; is at least 4/(k In m)?. Since both these answers are consistent with the
label p of the same partition, the verifier weakly accepts.
To complete the proof, use Proposition 4.2, which shows that the probability

that a verifier chooses a good r is at least §/2. [

To complete the proof of Lemma 4.1, observe that 28/(k In m)?* > k* - 27,
for sufficiently large ¢ (made possible by ¢ = @(log log n) and m = n®©). O

THEOREM 4.4. If there is some € > 0 such that a polynomial time algorithm can
approximate set cover within (1 — €) In n, then NP C TIME(n®{8 s m),

PROOF. Assume that there is a polynomial time algorithm A that approxi-
mates set cover within (1 — €) In n. Consider now an arbitrary NP-problem.
Reduce it to the NP-complete problem of approximating an instance of max
3SAT-5. Now follow the reduction to set cover described above, with k suffi-
ciently large so that f(k) in Lemma 4.1 is smaller than e/4, and with m =
(5n)?"¢. Using the deterministic construction of partition systems described in
Naor et al. [1995], and observing that m, R and Q are bounded by n©(°¢!oe)
the time to perform this reduction is n?(°¢1°¢ ™) Recall that the number of
points in the set cover problem is N = mR where R = (5n)¢, and observe that
for m as above, In m > (1 — €/2)In N. By Lemma 4.1, if the original NP
instance was satisfiable, all points can be covered by kQ subsets, and if the
original NP instance was not satisfiable, all points cannot be covered by (1 —
2f(k))kQ In m. For our choice of k and m, the ratio between the two cases is
(1 — 2f(k))ln m > (1 — €) In N. Hence, by applying algorithm A4 to the set
cover problem, one can tell whether the original NP instance was satisfiable or
not. [

5. Max k-cover

We say that a polynomial time algorithm constructively approximates max k-cover
within a ratio of 6 < 1 if on any input, the number of points covered by the k sets
selected by the algorithm is at least a é-fraction of the number of points covered
by the optimal solution. The following proposition is well known and is presented
for completeness.

PROPOSITION 5.1. The greedy algorithm (iteratively selecting the sets that cover
the largest number of yet uncovered points) constructively approximates max k-cover

within a ratio of at least 1 — 1/e = 0.632.

ProoOF. Let S’ C S be the set of points covered by the optimal solution, and

let n’ = |S’|. Let n; be the number of new points covered by the ith set selected
by the greedy algorithm. Then since S’ can be covered by k sets, it follows that
k

Hence 2{_, n; = n’ — n’ (1 — (1/k))" and

648 URIEL FEIGE

k 1\
En,—zn’—n’(l—k> =n'(1 - 1/e). O
i=1

Using a Turing reduction, Theorem 4.4 can be used to show that the
performance guarantee of the greedy algorithm is optimal up to low-order terms.
This has also been observed by others (see Guha and Khuller [1998], for
example).

PROPOSITION 5.2 If max k-cover can be constructively approximated in poly-
nomial time within a ratio of (1 — 1l/e + €) for some € > 0, then NP C
TIME(nOUOglOgn)).

PROOF. Assume that a polynomial time algorithm A approximates max
k-cover within a ratio of 1 — 1/e + € for some € > 0. We use algorithm 4 as a
subroutine in a polynomial time algorithm B that approximates set cover within
(1 — &) In n. By Theorem 4.4, this implies that NP C TIME(n©(°g1oem)),

Given an instance of set cover, try out all possible values of 1 =< k =< n as the
number of sets that suffice to cover all points. One of those choices of k is the
true optimal k, and we concentrate on the one case in which this & is tried out.
Algorithm B repeatedly applies algorithm A4 on max k-cover problems, where
after each application the points already covered by previous applications are
removed (but k remains unchanged).

Since all of S can be covered by k of the sets, then each time algorithm A4 is
applied a fraction of at least (1 — 1/e + €) of the remaining points are covered.
Hence the number of times that A is applied is at most £ where € satisfies (1/e —
€)" = 1/n, and the number of sets used in the cover is at most ¢k (recall that k
is the number of sets used by the optimum cover). Simple manipulations show
that € = In n/(1 — In(1 — e€)) < (1 — &) In n for some & > 0 that depends
only one. [J

We say that a polynomial time algorithm approximates max k-cover within a
ratio of 0 < 6 < 1 if on any input, the algorithm outputs a number that is
between opt and 6 - opt, where opt denotes number of points covered by the
optimal solution. The following theorem improves on Proposition 5.2 in two
respects: approximation need not be constructive, and the assumption NP ¢
TIME(n®U°g'°e ™)y is weakened to P # NP.

THEOREM 5.3. For any € > 0, max k-cover cannot be approximated in polyno-
mial time within a ratio of (1 — 1/e + €), unless P = NP.

ProOOF. We show a reduction from approximating max 3SAT-5 to approxi-
mating max k-cover. The value of k for the k-cover problem will be denoted by
k', so as to distinguish it from the number of provers in the underlying k-prover
proof system, and from the parameter k that this number induces for partition
systems.

The proof closely mimics that for set cover, and the reader is assumed to be
familiar with the reduction of Section 4 and the proof of Lemma 4.1. Unlike the
case for set cover, we set the parameter € (number of repetitions) to be some
large constant (rather than ®(log log n)). For this reason we shall get
NP-hardness results rather than results under the assumption that NP ¢

A Threshold of In n for Approximating Set Cover 649

TIME (n©(°¢1°2") = The explicit construction of partition systems becomes
simpler. Recall that L = 2¢ and let m = k" (the number of points in the
partition system is now a constant that depends on the number of provers and
the number of repetitions). Treat the points in a partition system as vectors in
{0, ..., k — 1}*, and let the ith partition partition the points into k disjoint
subsets according to their value on the ith coordinate. Clearly, any collection of j
subsets that appear in pairwise disjoint partitions covers exactly (1 — (1 —
1/k)"ym points.

By performing the reduction of Section 4, we create an instance of max
k'-cover with k' = kQ. If the original 3CNF-5 formula is satisfiable, then all N
points can be covered by kQ sets. We sketch the proof that if only a (1 —
€')-fraction of the clauses of the original formula are simultaneously satisfiable,
then kQ sets can cover at most (1 — 1/e + g(k))N points, where g(k) — 0 as
k — o,

Assume that a (1 — 1/e + €)-fraction of the points are covered, and derive a
contradiction. In analogy to the proof of Lemma 4.1, call r good if two conditions
hold: w, = 3k/e, and the w, sets that participate in covering points in the
partition system r contain at least two sets from the same partition.

PROPOSITION 5.4. The fraction of good r is at least €/3.

ProoF. The average value (over the choice of r) of w, is exactly k& (similar to
the proof of Proposition 8). Hence the fraction of r with w, > 3k/e is at most €/3.
Even if all points of the respective partition systems of these r are covered, the
average number of points that need to be covered from each other partition
system is at least (1 — 1/e + 2€/3)m. The average value of w, for these other r
is not larger than k.

Now assume that the fraction of good r is less than €/3 and derive a
contradiction. Even if all points of the good partition systems are covered, the
average number of points that need to be covered from each remaining partition
system is at least (1 — 1/e + €/3)m. The average value of w, for the remaining
partition systems is at most (1 + €/3)k. For the function A(j) = (1 — (1 —
1/k)’ym which describes how many points are covered by j subsets, the second
derivative is never positive. Hence the average number of points that are covered
per partition is maximized when all w, are equal, and then it is
(1 = (1 — 1/k)""<>*ym, which is smaller than (1 — 1/e + €/3)m (for large
enough k). O

Now proceed as in Proposition 4.3, using the fact that w, = 3k/e for good r.
This will give a strategy for the provers that causes the verifier to weakly accept
with probability €/3(e/3k)?. This is larger than k227 ¢, for large enough <.
Contradiction. [

6. Refinements

In our hardness of approximation result for set cover, € need not be constant. It
may be a decreasing function of n. To make € as small as possible, we strengthen
the NP ¢ TIME(n'°#°¢ ") assumption. Observe that the low order terms in
Proposition 6.1 are not far from optimal, as the greedy algorithm approximates
set cover within Inn — InInn + O(1) [Slavik 1996].

650 URIEL FEIGE

PROPOSITION 6.1. If for some m > 0, NP ¢ ZTIME(2""), then for some
constant ¢' > 0, there is no polynomial time algorithm that approximates set cover
within In n — ¢'(In In n)>.

ProOE. By the NP-completeness of approximating MAX 3SAT-5, if there is a
problem in NP that does not have ZTIME (2"") algorithms for some 1 > 0, then
max 3SAT-5 is not approximable in ZTIME(ZO("ZW)), for some (other) 0 < 1 <
1. Performing the reduction of Section 4 under this stronger assumption, we can
choose parameters of the reduction (such as k and m) to be larger, obtaining
smaller low order terms in the hardness of approximation result for set cover.

Specifically, we choose:
Number of points in a partition system: m = e
Number of provers: k = In m/3In In m = n".
Number of random bits of verifier: € = ¢” log n, for some sufficiently large
constant ¢” > 0.

We first verify that the above combination of parameters is possible. Recall
from Section 2 that we need k£ codewords of length € such that the Hamming
distance between any two codewords is {)(¢). This is possible whenever k is at
most mildly exponential in € (e.g., by taking a random code), which holds for the
choice of £ = ¢” log n. Another thing that needs to be checked is that the proof
of Lemma 4.1 still goes through, and we shall verify this shortly.

We analyze the hardness of approximation ratio that these parameters give.
Observe that for € as above, the number of random strings available to the
verifier is R = (5n)¢ = (51n)°'°¢ ", The total number of points in the set cover
problem is N = mR. Recall that if the original 3CNF-5 formula is satisfiable
then kQ sets may be used to cover all points, where k is the number of provers,
and Q is the number of different questions that a single prover can receive. If
only a (1 — €')-fraction of the clauses of the original 3CNF-5 formula are
simultaneously satisfiable, then (1 — 2f(k))kQ In m sets are required in order to
cover all points. The ratio between these two cases is (1 — 2f(k)) In m, which
we need to express as a function of N, the total number of points in the instance
of set cover.

From Lemma 3.2, it follows that in ZTIME (m©(°¢ ™)) = ZTIME(2O(”2”)) we
can construct partition systems with f(k) = 2/k = 6Iln In m/In m. From our
choice of parameters, In m = n" and In N = In mR = n" + O((log n)?),
implying that In m = In N — O((In In N)?). Altogether we have that (1 —
2f(k)) Inm = In N — O((In In N)?), as needed.

Finally, recall that for the proof of Lemma 4.1 we required that 4f(k)/
(kln m)? > k* - 27<¢, which indeed holds when ¢ is a sufficiently large multiple
of logn. O

An open question that is “traditionally” (ever since Lund and Yannakakis
[1994]) associated with the hardness of approximating set cover is that of
constructing two-prover one-round proof systems for NP, in which the amount of
randomness used by the verifier is logarithmic, the answer length of the provers
is logarithmic, and the error is polynomially small. Recall that our new k-prover
proof system is a variation on the low-error two-prover proof system of Section
2.2. Conceivably, if we had as a starting point a low-error two-prover proof
system in which the verifier uses O(log n) random bits, our techniques would

A Threshold of In n for Approximating Set Cover 651

lead to a proof of hardness of approximating set cover within (1 — €) In n under
the assumption that P # NP, rather than NP ¢ TIME(n?(°8'°¢")) The
number of random bits used by the verifier is relevant here because we construct
instances of set cover with N = mR points. For the reduction to be polynomial,
R must be polynomial in n, implying that the number of random bits used by the
verifier must be logarithmic in n. The error in the proof system has to be at most
O(1/(log n)?) for the proof of Lemma 4.1 (or a similar lemma) to go through.
The answer length must remain logarithmic so that the number of subsets and
the number of partitions in a partition system will remain polynomial.

The open question of trying to decrease R is also related to the analysis of the
low order terms as in Proposition 6.1. For m = 2"", if R is decreased to O(n°),
thenlnm = In N — O(In In N). This may allow to reduce the low order term to
O(log log n) (under the complexity assumption of Proposition 6.1). We remark
that for this choice of parameters we need the error in the k-prover proof system
to be polynomially small in order for the proof of Lemma 4.1 to go through.

We do not know that reducing the number of random bits used by the verifier
in two prover proof systems is a necessary requirement for obtaining tight (up to
low-order terms) NP-hardness results for set cover. Moreover, it may not even be
a sufficient requirement, since current techniques require that the proof systems
have very regular structure.

Some of the difficulties involved in reducing the number of random bits in
two-prover proof systems are discussed in Feige and Kilian [1995].

ACKNOWLEDGMENTS. I thank Moni Naor, Leonard Shulman, and Aravind Srini-
vasan for a preview of Naor et al. [1995], and Mihir Bellare for his comments on
an earlier version of this manuscript.

REFERENCES

ARORA, S., LunD, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992. Proof verification and
hardness of approximation problems. In Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 14-23.

ARORA, S., AND SAFRA, S. 1998. Probabilistic checking of proofs: A new characterization of NP. J.
ACM 45, 1 (Jan.), 72-122.

Basal, L., ForTNOW, L., AND LUND, C. 1991. Non-deterministic exponential time has two-prover
interactive protocols. Computat. Complex. 1, 3-40.

BaBal, L., AND MORAN, S. 1988. Arthur—-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36, 254-276.

BELLARE, M., GOLDWASSER, S., LUND, C., AND RUSSELL, A. 1993. Efficient probabilistically
checkable proofs and applications to approximation. In Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing (San Diego, Calif., May 16-18). ACM, New York, pp.
294-304.

BEN-OR, M., GOLDWASSER, S., KILIAN, J., AND WIGDERSON, A. 1988. Multi-prover interactive
proofs: How to remove intractability assumptions. In Proceedings of the 20th Annual ACM
Symposium on the Theory of Computing (Chicago, Ill., May 2-4). ACM, New York, pp. 113-131.

CHVATAL, V. 1979. A greedy heuristic for the set covering problem. Math. Oper. Res. 4, 233-235.

DYER, M., AND FRIEZE, A. 1985. A simple heuristic for the p-cent problem. Oper. Res. Lett. 3,
285-288.

FEIGE, U., GOLDWASSER, S., LOVASZ, L., SAFRA, S., AND SZEGEDY, S. 1996. Interactive proofs and
the hardness of approximating cliques. J. ACM 43, 2 (Mar.), 268-292.

FEIGE, U., AND KILIAN, J. 1995. Impossibility results for recycling random bits in two-prover proof
systems. In Proceedings of the 27th Annual ACM Symposium on the Theory of Computing (Las
Vegas, Nev., May 29-June 1). ACM, New York, pp. 457-468.

652 URIEL FEIGE

FEIGE, U., AND KILIAN, J. 1996. Zero knowledge and the chromatic number. In Proceedings of the
11th Annual IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los
Alamitos, Calif., pp. 278-287.

FEIGE, U., AND LOVAsz, L. 1992. Two-prover one-round proof systems: Their power and their
problems. In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing (Victoria,
B.C., Canada, May 4-6). ACM, New York, pp. 733-744.

ForTNOW, L., ROMPEL, J., AND SIPSER, M. 1994. On the power of multi-prover interactive
protocols. Theoret. Comput. Sci. 134, 545-557.

GOLDWASSER, S., MIcALI, S., AND RACKOFF, S. 1989. The knowledge complexity of interactive
proof-systems. SIAM J. Comput. 18, 186-208.

GUHA, S., AND KHULLER, S. 1998. Greedy strikes back: Improved facility location algorithms. In
Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, to appear.

HALLDORSSON, M. 1993. Approximating the minimum maximal independence number. Inf. Proc.
Lett. 46, 169-172.

HAsSTAD, J. 1996. Clique is hard to approximate within n'~¢. In Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos,
Calif., pp. 627-636.

HastaD, J. 1997. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing (El Paso, Tex., May 4-6). ACM, New York, pp. 1-10.

HAsTAD, J., PHILLIPS, S., AND SAFRA, S. 1993. A well-characterized approximating problem. In
Proceedings of the 2nd Israel Symposium on Theory of Computing and Systems. IEEE Computing
Society Press, Los Alamitos, Calif., pp. 261-265.

HocuBauMm, D. (Ep.). 1997. Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, Boston, Mass.

HocHBAUM, D., AND SHMOYS, D. 1985. A best possible approximation algorithm for the k-center
problem. Math. Oper. Res. 10, 180-184.

Hsu, W., AND NEMHAUSER, G. 1979. Easy and hard bottleneck location problems. Disc. Appl.
Math. 1, 209-216.

JoHnsoN, D. 1974. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9,
256-278.

LovAsz, L. 1975. On the ratio of the optimal integral and fractional covers. Disc. Math. 13,
383-390.

Lunp, C., ForTnOW, L., KARLOFF, H., AND NisaN, N. 1992. Algebraic methods for interactive
proof systems. J. ACM 39, 4 (Oct.), 859-868.

Lunp, C., AND YANNAKAKIS, M. 1994. On the hardness of approximating minimization problems.
J. ACM 41, 5 (Sept.), 960-981.

NAOR, M., SCHULMAN, L., AND SRINIVASAN, A. 1995. Splitters and near-optimal derandomization.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Los Alamitos, Calif., pp. 182-191.

PAPADIMITRIOUS, C., AND YANNAKAKIS, M. 1991. Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43, 425-440.

Paz, A., AND MoORAN, S. 1981. Nondeterministic polynomial optimization problems and their
approximations. Theoret. Comput. Sci. 15, 251-277.

Raz, R. 1995. A parallel repetition theorem. In Proceedings of the 27th Annual ACM Symposium
on the Theory of Computing (Las Vegas, Nev., May 29-June 1). ACM, New York, pp. 447-456.
RaAz, R., AND SAFRA, S. 1997. A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characteristization of NP. In Proceedings of the 29th Annual ACM Symposium

on the Theory of Computing (El Paso, Tex., May 4-6). ACM, New York, pp. 475-484.

SHAMIR, A. 1992. IP-PSPACE. J. ACM 39, 4 (Oct.), 869-877.

Sravik, P. 1996. A tight analysis of the greedy algorithm for set cover. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing (Philadelphia, Pa., May 22-24). ACM, New York,
pp. 435-439.

SRINISAVAN, A. 1995. Improved approximations of packing and covering problems. In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing (Las Vegas, Nev., May 29-June 1).
ACM, New York, pp. 268-276.

RECEIVED JULY 1997; REVISED JANUARY 1998; ACCEPTED APRIL 1998

Journal of the ACM, Vol. 45, No. 4, July 1998.

