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The significance of SUUWASSEA

EMILIEAE (Dinosauria: Sauropoda)

for flagellicaudatan

intrarelationships and evolution
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SYNOPSIS Suuwassea emilieae is a recently described dinosaur taxon discovered in the Upper
JurassicMorrisonFormationof thewesternUnitedStatesand theonlynon-diplodocidflagellicaudatan
(Dinosauria: Sauropoda) known fromNorth America. It retains sauropod symplesiomorphies that are
unexpected in a Late Jurassic taxon and thus sheds light on the evolutionary origins of the Flagelli-
caudata. Despite being comparatively small, the holotype of Suuwassea demonstrates hallmarks of
relatively advanced age. A phylogenetic analysis of 30 taxa and 331 characters retains Suuwassea
in a trichotomy with the Diplodocidae (Apatosaurus + (Diplodocus +Barosaurus)) and the Dicraeo-
sauridae (Dicraeosaurus +Amargasaurus). This lack of resolution is probably due to a combination of
missing data, character conflict and poor incorporation of specimens referred to diplodocid taxa that
differ from their holotype specimens and species holotypes. Middle Jurassic palaeobiogeographical
reconstructions conflict with the hypothetical distribution of flagellicaudatans in the Middle and
Late Jurassic based on their phylogeny, implying that physical barriers, such as epeiric seas, were
not responsible for limiting their initial radiation. The postparietal foramen shared by Suuwassea,
Dicraeosaurus, Tornieria and Amargasaurus may correlate to preferred existence in near-shore, ter-
restrial environments.
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Introduction

Although by no means required (Kearney & Clark 2003;
Norell & Wheeler 2003; Wiens 2003; Wilkinson 2003), com-
plete and abundant specimens (representing the fullest pos-
sible data sets) of any taxon are still ideal for establish-
ing and testing morphology-based phylogenetic hypotheses.
For a variety of reasons, many sauropod taxa remain known
from incomplete and often unique skeletons. Few localities

worldwide can conform to the ideal by producing abund-
ant, intact individuals. For most of the time that sauropods
have been studied, the Upper Jurassic Morrison Formation of
the western United States has remained virtually unequalled
in this respect and its sauropod fauna has thus been a key-
stone of sauropod research. The Morrison Formation has pro-
duced multiple, often spectacular specimens of Apatosaurus,
Camarasaurus and Diplodocus, all of which have played
critical roles in sauropod phylogenetic and palaeoecological
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Figure 1 A, Locality information for ANS 21122. More specific information has not been provided to prevent unlawful exploitation of site.
B, Reconstruction of Suuwassea emilieae Harris & Dodson, 2004, with preserved elements indicated in white (drawing by Jason Poole).

research. The highly distinctive and derived morphologies of
Apatosaurus and Diplodocus in particular stand out among
sauropods and their origins have remained unclear.

In 1999–2000, a joint team from the University of
Pennsylvania and the Academy of Natural Sciences (ANS)
recovered a new diplodocoid from the Upper Jurassic
Morrison Formation of south-central Montana. ANS 21122,
discovered by Dr William Donawick (University of
Pennsylvania) and Will Tillett of Lovell, Wyoming, was
named Suuwassea emilieae by Harris & Dodson (2004: see
Fig. 1). ANS 21122 clearly represents a diplodocoid as it dis-
plays numerous synapomorphies of that clade. The prelim-
inary phylogenetic analysis presented by Harris & Dodson
(2004) recovered a trichotomous Flagellicaudata (the clade
consisting of the most recent common ancestor of Diplodocus
and Dicraeosaurus and all its descendants), consisting of
Suuwassea, the Diplodocidae (Apatosaurus + (Diplodocus +
Barosaurus)) and the Dicraeosauridae (Dicraeosaurus +
Amargasaurus). Suuwassea is of particular interest because
although it is a diplodocoid from the Morrison Formation of
North America, it possesses a mosaic of plesiomorphic saur-
opodan features and character states otherwise diagnostic
of either the Gondwanan Dicraeosauridae or Morrison dip-
lodocids. Furthermore, Suuwassea is important because it
originated from exposures in Montana, farther north than
most other described Morrison sauropods. This may demon-
strate a palaeobiogeographical division in Morrison sauropod
palaeoecology. As a diplodocoid that retains plesiomorph-
ies not seen in Apatosaurus and Diplodocus (cf. Harris &
Dodson 2004), Suuwassea sheds light on the origin and
evolution of the Flagellicaudata. It is necessary to place
Suuwassea in a proper historical, chronological and palaeobi-
ogeographical framework to fully understand its importance.

A history of Morrison Formation

sauropods

Sauropods were initially discovered in Middle and Upper Jur-
assic and Lower Cretaceous sediments of Europe and the Up-
per Cretaceous of India (‘Titanosaurus’ indicus; see review
in Upchurch et al. 2004). However, even after over 150 years
of collecting, all European and Cretaceous Indian sauropods
remain described from only fragmentary skeletons or single
elements and were enmeshed in something of a taxonomic
morass until largely cleared by Upchurch & Martin (2002,
2003) and Wilson & Upchurch (2003). The first sauropod
specimens recovered from the Morrison Formation (Table 1)
also follow this pattern: many holotypes consist of fragment-
ary skeletons or single bones. Many of the holotypes were
established in the famous ‘Bone Wars’ competition of the
19th century between Othniel C. Marsh and Edward D. Cope
without the benefit of modern taphonomic understanding, so
they often consist of elements from multiple taxa. Recon-
ciling the consequent, convoluted specimen assignments has
proven a difficult task (e.g. McIntosh & Carpenter 1998) and
many taxa were not described more extensively until later in
the early 20th century (Table 1). To this day, however, some
Morrison discoveries from this era cannot be referred to ex-
isting genera, although they have not yet received restudy in a
modern context (‘Morosaurus’ agilis (Marsh 1889; Gilmore
1907) and ‘Apatosaurus’ minimus (Mook 1917)).

A long hiatus followed, during which no new sauro-
pod taxa were established from the Morrison Formation,
although several significant advances were made, such as
the recognition and description of the skull of Apatosaurus
(Berman & McIntosh 1978). It was not until the description of
specimens from the Dry Mesa Quarry in western Colorado
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Table 1 Chronological timeline of Morrison Formation sauropod discoveries and the status of each taxon.

Taxon
Author and Year of
Description Status Notes

Amphicoelias Cope 1877c, 1878 Uncertain Often considered nomen dubium or synonymous with either
Diplodocus or Supersaurus (McIntosh 1997b; Foster 2001);
see also Osborn & Mook (1921)

Apatosaurus Marsh 1877, 1879a, b Valid Additional specimens described by Riggs (1903b); Gilmore
(1936); see also Berman & McIntosh (1978)

Camarasaurus Cope 1877b Valid Additional specimens described by Osborn & Mook (1921);
Gilmore (1925)

Dystrophaeus Cope 1877a Nomen dubium From the Tidwell Member of the Summerville Formation, not
the Morrison Formation (Anderson & Lucas 1992; Lucas &
Anderson 1997); see also Gillette (1996a, b) and McIntosh
(1997a)

Diplodocus Marsh 1878 Valid Additional specimens described by Hatcher (1901); Holland
(1906, 1924)

‘Morosaurus’ agilis Marsh 1889 Uncertain See also Gilmore (1907)
Barosaurus Marsh 1890 Valid See also Lull (1919)
Brachiosaurus Riggs 1903a Valid See also Carpenter & Tidwell (1998)
Haplocanthosaurus Hatcher 1903a, b,

1906
Valid Additional species named by McIntosh & Williams (1988); see

also Bilbey et al. (2000)
‘Apatosaurus’ minimus Mook 1917 Uncertain
Ultrasauros Jensen 1985 emend.

Olshevsky 1991
Nomen dubium Type scapulocoracoid ref. to Brachiosaurus; type thoracic

vertebra ref. to Supersaurus (Curtice et al. 1996; Curtice &
Wilhite 1996)

Dystylosaurus Jensen 1985 Nomen dubium Type caudal vertebra ref. to Supersaurus (Curtice & Stadtman
2001)

Supersaurus Jensen 1985 Provisionally valid See also Curtice (1995) and Curtice & Stadtman (2001)
Cathetosaurus Jensen 1988 Nomen dubium Synonymised with Camarasaurus but retained as C. lewisi

McIntosh et al. 1996b)
Seismosaurus Gillette 1991 Nomen dubium Synonymised with Diplodocus; possibly distinct species

(Lucas 2000; Lucas et al. 2004)
Dyslocosaurus McIntosh et al. 1992 Valid Possibly from the Lance Formation (Upper Cretaceous), not

Morrison Formation
Eobrontosaurus Filla & Redman 1994,

Bakker 1998
Nomen dubium Synonymised with Camarasaurus (Upchurch et al. 2004)

Suuwassea Harris & Dodson 2004 Valid

Note the 80-year hiatus between the discoveries of the valid taxa Haplocanthosaurus and Supersaurus as well as the predominant tendency of taxa named from
1985 onward to be later synonymised with previously named taxa.

(Miller et al. 1991) that new taxa were named (Table 1).
Most recently, however, Suuwassea has been joined by sev-
eral, as yet undescribed, specimens, particularly those from
the northern reaches of the Morrison Formation depositional
basin, which demonstrate some peculiarities when compared
to well-known Morrison genera and may ultimately prove to
represent additional, distinctive taxa (Wilson & Smith 1996;
Erickson & Hanks 2001; H.-J. Kirby Siber, pers. comm.
2003; N. Murphy, pers. comm. 2003).

In point of fact, most of the recently-proposed Morrison
sauropod genera have been met with a great deal of skepti-
cism and their fate has generally been synonymy (Table 1).
Therefore, proposition of a new Morrison Formation sauro-
pod genus such as Suuwassea requires substantial support.
Many of the distinguishing characteristics of Suuwassea are
subtle, but certainly no more – and often much less – so
than those that are universally accepted as separating Dip-
lodocus and Barosaurus. The possibility that differences are
ontogenetic is discussed below.

The current, genus-level, sauropod inventory of the Up-
per Jurassic Morrison Formation consists of Apatosaurus,
Barosaurus, Brachiosaurus, Camarasaurus, Diplodocus,

Haplocanthosaurus and Suuwassea. Supersaurus is less
well-known but is provisionally valid (Curtice 1995;
Curtice & Stadtman 2001) pending a full reanalysis. At
a higher taxonomic level, the Morrison Formation sauro-
pod fauna is dominated (in terms of number of individuals)
by the basal macronarian (cf. Wilson 2002) Camarasaurus,
but flagellicaudatan diplodocoids (Apatosaurus, Barosaurus,
Diplodocus, Supersaurus, Suuwassea) are the most diverse
(Foster 2003; Fig. 2). Brachiosaurus and Haplocanthosaurus
remain comparatively rare and are restricted to the lower half
of the formation (Carpenter 1998, Turner & Peterson 1999).

Flagellicaudatan ontogeny

Whether the unusual features exhibited by Suuwassea are
the result of ontogenetic, rather than phylogenetic, differ-
ences (Brochu 1996) must be considered. Aside from the
fact that it was not a hatchling or very young juvenile, the
age of ANS 21122 at the time of death is equivocal. The ana-
tomical terminology used herein follows Harris (2004) with
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Figure 2 Abundances of sauropod taxa in the Morrison Formation
based on number of sites producing material identifiable to genus
(modified and simplified from Foster 2003). The Flagellicaudata
consists of Apatosaurus, Barosaurus, Diplodocus, Supersaurus and
Suuwassea, and is largest because it contains multiple taxa;
individually, each taxon is less common. Camarasaurus is the single
most common sauropod genus. The category ‘Other’ sums
occurrences of very rare or unique sauropod specimens
(Amphicoelias, ‘Apatosaurus’minimus, Dyslocosaurus and
‘Morosaurus’ agilis.)

emendations of vertebral laminae from Harris (2006b) Some
basicranial sutures are obliterated by fusion, but others are
visible; some elements (e.g. the supraoccipital) demonstrate
both conditions on opposite sides (Harris 2005). The dens is
fused to the axis, although the suture line is visible (Harris
2006b). All cervical vertebral arches are seamlessly co-
alesced with their respective bodies. In crocodylians, both of
these features indicate a high maturity index (Brochu 1996).
In contrast, the cervical vertebral arches are completely sep-
arate from their respective bodies in a juvenile specimen re-
ferred to Apatosaurus (Carnegie Museum 555/556) despite
the fact that these elements are roughly the same size as in
ANS 21122. In Suuwassea, arches of the preserved thoracics
are fused, although suture lines remain discernible. Those
of the proximal and middle caudal vertebrae were unfused
(Harris 2006b: fig. 13A), but they were apparently fused
on the more distal caudals (Harris 2006b: figs 13E–I). This
contrasts with the caudal-to-cranial pattern of fusion dur-
ing ontogeny seen in crocodylians (Brochu 1996), so it is
possible that the crocodylian model does not apply to saur-
opods. Overall, however, the vertebral features imply that
ANS 21122 was by no means a juvenile animal, despite its
comparatively small size, but nor was it fully grown.

The ends of preserved limb bones are well-formed.
The deltoid ridge on the scapular acromion process is
pronounced, which may be an adult feature in sauropods
(Bonaparte 1986), although the scapula and coracoid are un-
fused. Conceivably, calcanei ossify with age in diplodocoids;
if so, then ANS 21122 represents a fairly old individual be-
cause that element is large and robust (Harris & Dodson
2004; Harris 2005).

Some features present in ANS 21122 that could be per-
ceived as ontogenetic variants are absent in other flagelli-
caudatans, regardless of size. These features include such
structures as the dorsal tuberculum on the humerus and the
enormous, elongate dorsal tori on the cranial cervical verteb-
rae (Harris & Dodson 2004, Harris 2006a, b) that, as muscle
and tendon insertion points, are in an advanced state of de-
velopment. These imply advanced age (Brochu 1996), again
despite the small size of the specimen compared to other fla-
gellicaudatans, particularly other Morrison Formation taxa,
and the fact that significantly larger specimens of those taxa
either lack these same features or have much less developed
versions. Therefore, these characters in Suuwassea are more
likely to be of genuine phylogenetic value than attributable
to issues of maturity.

Diplodocoid palaeobiogeography

Until the discovery of basal taxa (the rebbachisaurids Reb-
bachisaurus garasbae, Limaysaurus [?= Rebbachisaurus]
tessonei and, possibly, Losillasaurus), members of the Dip-
lodocoidea were perceived as phylogenetically split into two
fundamental radiations: the Dicraeosauridae and the Dip-
lodocidae (Figs 3 & 4). Even in the most comprehensive
recent analyses that incorporate them, the Rebbachisauridae
invariably fall out as the sister taxon to a flagellicaudatan
(Diplodocidae + Dicraeosauridae) dichotomy. The Dicraeo-
sauridae is limited to Africa and South America, but the
diplodocid identity of Tornieria africana (K. Remes, pers.
comm. 2003) demonstrates that members of the more diverse
Diplodocidae were more widespread. Why dicraeosaurids
apparently never moved into Laurasia while diplodocids did
has not been examined (but see below).

Phylogenetic analysis

Methods and materials

The analysis performed by Harris & Dodson (2004)
recovered a position for Suuwassea in a trichotomy with the
previously recognised clade Diplodocidae + Dicraeosauridae
(i.e. the Flagellicaudata). To see if more recent sauropod
phylogenetic analyses could resolve this trichotomy, a
second cladistic analysis of apomorphic character distri-
butions was performed to elucidate the most parsimonious
placement of Suuwassea with respect to other sauropods,
particularly diplodocoids. The data matrix (see Supple-
mentary Data available on Cambridge Journals Online on:
http://www.journals.cup.org/abstract_S1477201906001805)
combines the matrices and character lists (which can be
thought of as incipient or tacit matrices) of Calvo & Salgado
(1995), Salgado (1999), Wilson (2002), and Upchurch
et al. (2004), which receive as prefixes for each character in
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Figure 3 Sauropod phylogeny (simplified from Harris & Dodson 2004) showing occurrences and ranges of non-titanosaurian taxa,
emphasising diplodocoids. The ‘C’ indicates occurrence of British Museum (Natural History) specimen (BMNH) R.1967, a string of articulated,
biconvex distal caudal vertebrae incorrectly referred to Cetiosauriscus stewarti (Heathcote 2003), possibly marking the earliest known
occurrence of the Diplodocoidea.

this matrix C, S, W and U, respectively (see Supplementary
Data: Appendices 1 and 2). Updates for some taxa outlined
in Harris & Dodson (2004) were also included. Where
possible, duplicate characters were joined into a single
character; in some instances, when two characters were
similar but not identical, one character was preferentially
selected, generally where one state was much more clearly
defined than the other. Some characters had to be revised
entirely; details are provided in Supplementary Data:
Appendix 2. The resultant matrix had 331 characters, six
of which were ordered: characters 14, 89, 93 and 284 were
ordered following Wilson (2002), while characters 6 and 324
were also ordered because they were combined from two se-
quential (i.e. tacitly ordered) sets of characters by Upchurch
et al. (2004; see Supplementary Data: Appendix 2). The mat-
rix was otherwise similar to that used by Harris & Dodson
(2004), utilising the taxon set of Wilson (2002), adding
only Suuwassea and Losillasaurus. As in Wilson (2002)
and Upchurch et al. (2004), character polarity was asses-
sed using the Theropoda and Prosauropoda as outgroups.
Losillasaurus, originally recovered as a basal diplodocoid
(Casanovas et al. 2001), was retained to see if the new,
enlarged matrix used would also clarify its relationships.
Tornieria africana was specifically left out of the analysis
pending restudy (K. Remes, pers. comm. 2003), although
if much of the material attributed to this taxon genuinely

pertains to a single species, it is more complete than many
other taxa that have been included in previous sauropod
phylogenetic analyses. The titanosaurian Neuquensaurus
was also omitted owing to the incomplete state of its
description at the time of the analysis. The final matrix
therefore included 30 operational taxonomic units (OTUs).
Including, and in addition to, the character state revisions
of Mamenchisaurus and Omeisaurus utilised by Harris &
Dodson (2004), several other sources of information (see
Supplementary Data: Appendix 1) provided additional data
on character states for included taxa. Suuwassea was coded
for 118 out of the 331 characters (roughly 36%).

Results

Analyses were performed in PAUP∗ 4b10 (Swofford 2002).
The large number of taxa used precluded an exhaustive
search, so following the guidelines used by Wilson (2002),
an initial heuristic analysis was performed using random
stepwise addition (with 50 replicates) with Maximum trees =
500 000. This analysis produced 72 equally most parsi-
monious trees (MPTs) with length = 783, consistency in-
dex (CI) = 0.526 and retention index (RI) = 0.687. Among
these, Suuwassea occurs in only one of two positions. In half
the trees (36), Suuwassea falls as the sister taxon to the
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Figure 4 The ‘traditional’ phylogeny of the Sauropoda (modified
and simplified from McIntosh 1990). Everything within node A
represents what is currently understood as the Diplodocoidea; node B
represents the Diplodocidae. In this phylogeny, the position occupied
by Dicraeosaurus can represent the Dicraeosauridae.

Diplodocidae (Apatosaurus + (Diplodocus + Barosaurus)),
united by the following synapomorphies (see Supplement-
ary Data: Appendix 2 for character definitions): 50(1), 65(1),
168(1), 314(1) and 319(1). In the remaining 36 MPTs,
Suuwassea occurs as the sister taxon to the Dicraeosaur-
idae (Dicraeosaurus + Amargasaurus), united by synapo-
morphies 28(0), 33(1), 118(1)∗ and 194(1), where an as-
terisk (∗) denotes a character for which states on the stem
below the branch are equivocal. These results reduce by
half the number of possible positions recovered by Harris &
Dodson (2004) in which Suuwassea also occurred as either
the sister taxon to Apatosaurus within the Diplodocidae
or as the sister taxon to the Flagellicaudata (in this latter
case, Suuwassea is not, by definition (Harris & Dodson,
2004), a flagellicaudatan). In some trees, Losillasaurus con-
tinued to pair with Mamenchisaurus (or as sister to an
(Omeisaurus + Mamenchisaurus) clade), but in others, it
branched one step further up the tree than the Chinese taxon,
often as a sister taxon to Patagosaurus with Barapasaurus
out one further step.

Consensus trees were computed as follows: both strict
and semistrict consensus trees are identical (Fig. 5A) and,
predictably, recovered Suuwassea in a trichotomy with
the Diplodocidae and Dicraeosauridae, the identical posi-
tion recovered in the less expansive analysis of Harris &
Dodson (2004). Losillasaurus remained a non-neosauropod.
An Adams consensus (Fig. 5B) also recovered the flagel-
licaudatan trichotomy. This tree differs from the former
largely in its fragmentation of the polytomies among the non-
neosauropodan eusauropods and within the Titanosauria.
Losillasaurus retained its prior non-neosauropodan posi-
tion.

Despite the lack of demonstrable correlation between
the information obtained concerning the phylogenetic affin-
ities of a taxon and its degree of completeness in a given
data matrix (Kearney & Clark 2003; Wiens 2003; see be-
low), an heuristic analysis that excludes the more poorly
known (represented by a high percentage of missing data),
non-flagellicaudatan taxa from the matrix (Haplocantho-
saurus, Euhelopus, Jobaria, Malawisaurus, Nigersaurus,
Rebbachisaurus, Alamosaurus, Losillasaurus) produced
only two trees, with somewhat better statistics (length = 679,
CI = 0.602, RI = 0.709). Interestingly, in both trees, Suuwas-
sea remained within the Flagellicaudata but as the sister taxon
to the Dicraeosauridae, united by synapomorphies 33(1),
104(0)∗, 118(1)∗ and 194(1). When Haplocanthosaurus and
Malawisaurus (a presumed basal neosauropod and basal ti-
tanosaurian, respectively) were reintroduced, this number in-
creased to four trees (length = 710, CI = 0.577, RI = 0.700),
three of which retained a Suuwassea + Dicraeosauridae clade
(united by synapomorphies 28(0), 33(1), 104(0)∗, 118(1)∗
and 194(1)) and one of which found a Suuwassea + Diplodo-
cidae clade (united by synapomorphies 50(1), 101(1), 168(1),
314(1) and 319(1)). Strict, semistrict and Adams consensus
trees of this analysis recovered, as before, a flagellicaudatan
trichotomy, but a 50% majority-rule consensus retained the
Suuwassea + Dicraeosauridae grouping.

Lastly, both exhaustive and heuristic analyses pruning
all taxa except Suuwassea, the outgroups (Prosauropoda and
Theropoda), diplodocids (Apatosaurus, Barosaurus, Dip-
lodocus), dicraeosaurids (Amargasaurus, Dicraeosaurus)
and the best known rebbachisaurid (Limaysaurus) pro-
duced a single tree (length = 323, CI = 0.904, RI = 0.884)
in which Suuwassea was recovered as the sister taxon to
the Diplodocidae. These abbreviated analyses demonstrate
that some character states convergently evolved by many
non-diplodocoid and non-diplodocid taxa have powerful ef-
fects on resolution within the Diplodocoidea. This encour-
ages both better descriptions of poorly known taxa as well as
the search for more characters that may reduce these effects
and clarify resolution within this clade.

A 50% majority bootstrap analysis was also performed
on the full matrix (again with Maximum trees = 500 000 and
50 replicates) using the heuristic setting and random step-
wise addition (following Wilson 2002). This recovered a
single tree (Fig. 6) in which, as in the heuristic consensus
trees, Suuwassea, the Diplodocidae and the Dicraeosauridae
form three trichotomous branches of the Flagellicauda, a
clade that has excellent support, higher than that recovered by
Harris & Dodson (2004). Losillasaurus is retained as a non-
neosauropod, close to Mamenchisaurus. Haplocanthosaurus
occurs as a non-diplodocoid, basal neosauropod, contrasting
with the position recovered in the non-pruned analysis of
Wilson (2002). More exact (i.e. less plastic) positions of
Haplocanthosaurus, Jobaria and Losillasaurus across trees
may follow more complete descriptions of the latter two
taxa and new specimens of Haplocanthosaurus (Bilbey et al.
2000; Southwell et al. 2003). The low tree statistics in the
full analyses are probably due in large part to the inclusion
of wildcard taxa that are either poorly described (e.g. Losil-
lasaurus), poorly known (e.g. Vulcanodon, Nemegtosaurus),
or poorly resolved (either non-neosauropodan eusauropod or
titanosaurian). Again, redescriptions using new material of
these taxa might increase confidence and resolution in the
trees.
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Figure 5 Strict and semistrict (identical: A) and Adams (B) consensus trees of phylogenetic analysis of relationships of Suuwassea emilieae
using the data matrix presented in the Supplementary Data. Note that, in both consensus trees, the Flagellicaudata consists of a trichotomy
containing Suuwassea, the Diplodocidae (Apatosaurus + (Diplodocus + Barosaurus)) and the Dicraeosauridae (Dicraeosaurus + Amargasaurus).
Node (arrows) and stem clade names from Wilson (2002) and Harris & Dodson (2004).

Discussion and conclusions

The flagellicaudatan trichotomy

Despite an expanded data matrix, including a 41% increase
in the number of characters over the analysis of Harris &
Dodson (2004), the phylogeny of the Flagellicaudata was not

clarified and the trichotomy remains. In part, this is probably
due to the presence of equivocal states on the stems below the
Flagellicaudata for characters 104(1) and 118(1) that other-
wise support dicraeosaurid affinities. If these characters are
later shown to be present in more primitive taxa, it would
diminish support for a Suuwassea + Dicraeosauridae clade
while strengthening support for a Suuwassea + Diplodocidae
clade.
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Figure 6 Phylogenetic analysis of relationships of Suuwassea emilieae produced by 50% majority rule analysis of the data matrix presented
in the Supplementary Data. Note that the Flagellicaudata consists of a trichotomy containing Suuwassea, the Diplodocidae (Apatosaurus +
(Diplodocus + Barosaurus)) and the Dicraeosauridae (Dicraeosaurus + Amargasaurus). Node (arrows) and stem clade names from Wilson (2002)
and Harris & Dodson (2004). Numbers are bootstrap values (percentages) for each stem.

In addition, three other factors probably contribute to
this lack of resolution:

(1) Specimen incompleteness. Although the data matrix was
expanded, the only additional element recognised and
described for Suuwassea after Harris & Dodson (2004)
was a squamosal (Harris, 2005). No new specimens have
been recognised that could replace missing with actual
data, so expanding the data matrix did not add many addi-
tional diagnosable character states. In short, Suuwassea
retained virtually as much missing data as it had pre-
viously: it was codable for 34% of the characters in
Harris & Dodson (2004) versus 36% here. Along with
character conflict, this is probably the factor contribut-
ing most to the lack of resolution and the resultant ‘soft’
polytomy (sensu Maddison 1989).

(2) Character set incompleteness. Compounding the incom-
pleteness of the specimen, the characters added to the
matrix are not applicable to ANS 21122. This does not
mean that these characters were poor or should not have
been added; only that further characters whose states
may be determined in ANS 21122 have not yet been iden-
tified (Wiens 2003). Many characters that might clarify
flagellicaudatan intrarelationships await fuller descrip-
tion of Tornieria africana and analysis of specimens re-
ferred to Apatosaurus, Diplodocus and Barosaurus. This
could result in the removal of some characters that have
variable expression within an OTU, or it could identify
previously unrecognised taxa that can be coded separ-
ately, thus allowing finer resolution.

(3) Common ancestor fecundity. Parsimony-based cladistic
analyses preferentially seek out evolutionary events that

produce dichotomous results (i.e. only two branches at
any node). It remains possible, however, that any an-
cestral (meta)taxon may give rise to multiple descend-
ant taxa (multiple speciation, which produces a ‘hard’
polytomy, sensu Maddison (1989)), even with the fullest
possible data set, this is represented by a trichotomy (or
polytomy for particularly fruitful ancestral (meta) taxa).
Hypothetically, Suuwassea and other flagellicaudatans
truly share a common ancestor that is not more closely
related to either Suuwassea, the Diplodocidae, or the
Dicraeosauridae than any other. The Flagellicaudata
would be an ambitaxon sensu Archibald (1994). With
presently available data, this hypothesis is essentially
untestable as far as Suuwassea and the Flagellicaudata
are concerned, but it must be considered as a possible,
albeit remote, contributing factor.

Suuwassea as a distinct taxon

The 36% of character states coded for Suuwassea in this
analysis is greater than or equal to some other included
taxa (e.g. Barosaurus with 117/331 = 35%, Vulcanodon with
99/331 = 29%, Nemegtosaurus with 91/331 = 27%) that are
unquestionably valid. Nevertheless, there is no currently ac-
cepted threshold of missing data (as a percentile) at which
taxa should be pruned from an analysis to ‘enhance’ resolu-
tion (Kearney & Clark 2003). The models explored by Wiens
(2003) indicate that the lack of identified characters, not the
lack of character state data for a given taxon in a matrix, is a
bigger factor.

Furthermore, while Suuwassea behaved as a wildcard
taxon in the heuristic analyses, it alternated between only



Significance of Suuwassea emilieae for Flagellicaudatans 193

two possible positions, as sister taxon to either of the ter-
minal clades (the Diplodocidae and Dicraeosauridae). The
resultant consensus trees collapsed the Flagellicaudata into
a (probably ‘soft’) polytomy with those two terminal clades.
While the influence of missing data has not been assessed
with respect to this lack of resolution, some of it is certainly
due to character conflict, particularly with characters indicat-
ing diplodocid affinities (50(1), 65(1), 101(1), 168(1), 314(1)
and 319(1)) versus those supporting dicraeosaurid affinit-
ies (28(0), 33(1), 104(0)∗, 118(1)∗ and 194(1)). Conflicting
characters may either be perceived as variable within a single
taxon (in this case, assuming ANS 21122 were perceived as a
specimen of another taxon, such as Apatosaurus) or as genu-
ine autapomorphies diagnostic at a lower taxonomic level
(a ‘genus’ or species). Possession of novel characters that
have physiological ramifications (such as the postparietal fo-
ramen), render less likely intraspecific variation as a valid
explanation (i.e. it is unlikely that some individuals of a spe-
cies have the structure and others lack it). Thus, in addition
to its autapomorphies, the conflicting characters most parsi-
moniously support interpretation of Suuwassea as a valid
taxon.

For the purpose of facilitating future field identification
of a Morrison Formation sauropod specimen as Suuwassea
(as opposed to as Apatosaurus, Barosaurus, or Diplodocus),
and since many of its autapomorphies (Harris & Dodson
2004) are somewhat subtle, it is useful to list traits that, al-
though not autapomorphic for Suuwassea, allow a specimen
to be distinguished from other currently-known diplodoc-
oids in the Morrison Formation. These include (based on
personal observation as well as references listed in Table 1):
overall size smaller than Apatosaurus or Diplodocus, despite
relatively advanced age (see ‘Flagellicaudatan ontogeny,’
above); postparietal foramen present (absent in Apatosaurus
and Diplodocus), small trapezoidal, not recessed below level
of skull roof; occipital surface of skull and foramen mag-
num lie in roughly the same plane (noticeably angled in
Diplodocus); sagittal nuchal crest sharp (low, rounded and
broad in Apatosaurus and Diplodocus); post-temporal pro-
cesses lacking dorsal contact with squamosal processes
of parietals (contact present in Apatosaurus); basal tuber-
cula project caudoventrally (ventrally in Apatosaurus and
Diplodocus); basisphenoid visible between basal tubercula
in caudal view (absent in Apatosaurus and Diplodocus);
cranial spinozygapophyseal laminae in cranial cervicals re-
duced or non-existent (prominent in Apatosaurus louisae and
Diplodocus, reduced in A. excelsus); cranial cervical spinous
processes situated entirely over caudal margin of vertebral
bodies (seen elsewhere only in Apatosaurus excelsus); bifurc-
ation of cervical spinous processes begins at cervical 6 (cer-
vical 2 in Dicraeosaurus, 3 in Diplodocus, 5 in Apatosaurus
louisae, 5 or possibly 6 in A. excelsus); cranial-mid cervical
spinous processes broader mediolaterally than craniocaud-
ally with distal lateral expansions (absent in Diplodocus and
A. louisae); spinous processes of cervicals 2–5 with pro-
nounced caudal inclination, reverts to cranial inclination at
cervical 6 (no angulation in Diplodocus, reversion by cervical
5 in A. excelsus); cranial zygapophyseal alae of cervicals 2–
5 with caudodorsally concave margins in lateral view (seen
elsewhere only in Apatosaurus louisae and Dicraeosaurus);
cervicals 2–6 (at least) with distinct, elongate dorsal tori;
dorsalmost point on acromion closer to glenoid fossa than to
midpoint of scapular body (opposite condition in Diplodocus

and Barosaurus); coracoid with rounded craniomedial mar-
gin (square in Apatosaurus); humerus robust, with proximal
and distal ends greatly expanded with respect to mid-body
(humerus comparatively slender, with less expanded ends,
in Diplodocus); one of the first two pedal unguals longer
but lower than the other (not present in Apatosaurus or
Diplodocus).

Flagellicaudatan

palaeobiogeography

The oldest flagellicaudatan remains are from the Middle
Jurassic (see above), at which time Pangaea was still in
the early stages of fragmentation (e.g. Smith et al. 1994).
The proximity of most continental land masses at this time
may have enabled the earliest flagellicaudatans and their im-
mediate ancestors to disseminate widely during the Middle
Jurassic. Their apparent absence in Asia, as reflected by
the prolific Middle Jurassic Dashanpu and Late Jurassic
Shaximiao and related sauropod localities in China (He
et al. 1988; Zhang 1988; Ouyang 1989; Dong 1990, 1997;
Zhao 1993; Zhang et al. 1998; Maisch et al. 2001, 2003) and
Kirgyzstan (Alifanov & Averianov 2003), may also date to
this period, since Asia was separated from Europe (and all
other continents) by an epeiric sea (Russell 1993; Upchurch
1995; Upchurch et al. 2002). This marine barrier was not in
place in the Bajocian (Smith et al. 1994), implying one or
more of the following: (1) flagellicaudatans did not evolve
until the Bathonian (and the European discoveries are close
to being true first appearance data); (2) other physical and/or
palaeoecological barriers prevented spread into Asia; (3) ta-
phonomic biases in Asia have precluded the discovery of
flagellicaudatans there; or (4) the palaeogeographical under-
standing of Europe and Asia during this time is incomplete.

Flagellicaudatans have not yet been recognised in the
Middle Jurassic of Argentina (Casamiquela 1963; Bonaparte
1986; Rich et al. 1999; Weishampel et al. 2004), implying
either a true absence, taphonomic bias, or the presence of
other physical and/or ecological barriers that restricted the
earliest flagellicaudatans geographically. However, epicon-
tinental seaways similar to that between Europe and Asia
in the Bathonian are reconstructed as separating Europe
from North America and Gondwana since the Early Triassic
(Smith et al. 1994). It is then possible that the earliest flagel-
licaudatans were truly restricted to Europe. If they were more
widespread in the Middle Jurassic, then the seaway separat-
ing Europe and Asia at the same time should not have proven
an impassable physical barrier to flagellicaudatan dispersal.

The paucity of Middle Jurassic vertebrate fossils glob-
ally makes it impossible to assess any of these options: such
faunas are well represented only in Patagonia, China, west-
ern Europe (Heathcote 2003; Upchurch & Martin 2003) and
Morocco (Monbaron 1983; Monbaron et al. 1999). Despite
the recent recognition of probable ichnological differences
between wide-gauge, ‘titanosauriform’ and narrow-gauge,
non-‘titanosauriform’ taxa (Wilson & Carrano 1999), which
broadens the dataset with which to perform such a test,
even the trackway record of Middle Jurassic sauropods is
sparse, with specimens stemming largely from the same land-
masses as the body fossil record, i.e. Europe (Santos et al.
1994; Whyte & Romano 1994; Avanzini 1997; Day et al.
2002, 2004) and northwestern Africa (Ishigaki 1988, 1989;
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Meyer & Monbaron 2002). Narrow-gauge (Parabrontopodus
sensu Lockley et al. (1994)) trackways dominate in the Juras-
sic (Wilson & Carrano 1999) and, although these trackways
include ichnotaxa that possess neosauropodan morphology, it
is presently impossible to specify whether their makers were
flagellicaudatans or non-flagellicaudatan neosauropods.

By the Callovian, North America was physically sep-
arated from Gondwana and Europe was isolated by epeiric
seas (Smith et al. 1994). The presence of diplodocines in
the Late Jurassic of both Laurasia (Morrison Formation,
Portugal, Germany) and Gondwana (Tendaguru, presuming
Tornieria to be diplodocine) thus implies that the Diplodo-
cidae must have been present on both land masses prior to
this time. Since the Dicraeosauridae is the sister taxon to
the Diplodocidae, the first dicraeosaurids must also predate
this split. This means that there is no a priori reason to pre-
sume that dicraeosaurids did not exist in Laurasia and that
the lack of any definitive dicraeosaurid fossils in any of the
Late Jurassic, flagellicaudatan-producing, Laurasian forma-
tions reflects either a pseudo-absence or a regional extinc-
tion sensu Upchurch et al. (2002). Vicariance, therefore,
cannot explain the observed restriction of dicraeosaurids to
Gondwana. The presence of Suuwassea, a non-diplodocid,
non-dicraeosaurid flagellicaudatan, in the Morrison Forma-
tion alongside true diplodocids supports the hypothesis that
dicraeosaurids could also have inhabited North America.
Similarly, the lack of diplodocid fossils in Gondwana after
the Late Jurassic also reflects either a pseudo-absence or a re-
gional extinction. Both hypotheses remain based on negative
evidence.

One feature of Suuwassea is particularly interesting in a
palaeobiogeographical and palaeoecological light: the post-
parietal foramen. Suuwassea has been hypothesised as be-
longing to a somewhat different Morrison Formation fauna
(or faunal province) than the ‘typical’ fauna known from
more southern parts of the depositional basin (Harris &
Dodson 2004), perhaps reflecting a palaeoenvironmental
preference, possibly for a palaeoecosystem closer to the sea.
Of the three other taxa that possess a postparietal foramen,
two – Dicraeosaurus and Tornieria, both from Tendaguru –
are also found in near-shore terrestrial deposits. The pa-
laeoenvironment of the La Amarga Formation in which the
remaining taxon, Amargasaurus, was preserved, has been
interpreted as wholly terrestrial (Leanza & Hugo 2001), al-
though others have interpreted its setting also as being in
close proximity the sea (Malumián et al. 1983; Montanelli
1987; Andreis 2001; but see discussion in Prámparo &
Volkheimer 2002). Even though its function remains un-
known, the concurrence of a postparietal foramen in saur-
opods in near-shore palaeoenvironments is unexpected and
may be correlative. If true, the best place to seek other basal
flagellicaudatans and dicraeosaurids in the Morrison Forma-
tion would be in the northern part of the depositional basin,
closer to the sea.
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