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The genus Gossypium includes 46 diploid (2n = 2x = 26) and 5 well-
established and 1 purported tetraploid (2n = 4x = 52) species1,2. It  
has been proposed that all diploid cotton species may have evolved 
from a common ancestor that subsequently diversified to produce 
eight groups, including groups A–G and K3. Allopolyploid cotton may 
have appeared in the last 1–2 million years through hybridization and 
subsequent polyploidization events between the A- and D-subgenome 
progenitors. All tetraploid cotton species came from interspecific 
hybridization between the A-genome species G. arboreum (A2) and 
the D-genome species G. raimondii (D5)3. The A-genome species are 
cultivated, whereas the D-genome species do not produce spinnable 
fiber. Although G. arboreum (A2) and G. raimondii (D5) are the putative 
donor species for the A and D chromosome groups, respectively, tetra-
ploid cotton species differ greatly with respect to plant morphology as 
well as economic characteristics, including fiber production, oil content 
and disease resistance. Furthermore, G. arboreum (1,746 Mb/1C) has a 
genome size that is almost twice that of G. raimondii (885 Mb/1C)4.

In the current study, assisted by a high-resolution genetic map, 
we anchored and oriented 90.4% of the G. arboreum assembled 
scaffolds on 13 pseudochromosomes. This assembly was compared 
with that of G. raimondii to understand possible paths for genome 

evolution and species divergence. A highly homozygous single-seed  
descendant, derived from 18 successive generations of self-fertilization,  
of the cultivated diploid cotton Shixiya1 (SXY1) was used for DNA 
sequencing. Assembly of the G. arboreum genome and compara-
tive studies with the genome of G. raimondii5,6 may provide new 
insights into the process of divergence among polyploid species7–9. 
We believe that the G. arboreum genome offers a diploid reference for 
the analysis of cotton agronomic traits, such as fiber quality10–13 and  
disease resistance14,15.

RESULTS
Genome sequencing and assembly
We sequenced and assembled the G. arboreum genome using the whole-
genome shotgun approach. In brief, a total of 371.5 Gb of raw paired-
end Illumina reads was generated by sequencing genome shotgun 
libraries with different fragment lengths that ranged from 180 bp to 
40 kb (Supplementary Table 1). After filtering out low-quality reads,  
193.6 Gb of high-quality sequence was obtained and used for the de novo 
assembly process (Supplementary Table 2). We next used 33,454 BAC 
end sequences (16,727 pairs; approximately 1-fold physical coverage) to 
improve the assembly. Over 90% of our BAC clones contained inserts of 
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≥50,000 bp in length (Supplementary Fig. 1). In-depth analysis showed 
that all scaffolds were supported by multiple (>80) paired-end linkages 
(Supplementary Fig. 2). The number of scaffolds decreased in libraries 
with increasing insert size (>2,000 bp). Using K-mer distribution analysis, 
the genome size was estimated to be 1,724 Mb (Supplementary Fig. 3),  
which is consistent with a previous report4.

Our final assembly, performed with SOAPdenovo16,17, showed 
that the G. arboreum genome is 1,694 Mb in total length (Table 1). 
Ninety percent of the assembly fell into 2,724 superscaffolds that 
were >148 kb in length, with the largest scaffold being 5.9 Mb. N50  
(the size above which 50% of the total length of the sequence assem-
bly can be found) for the contigs and scaffolds was 72 kb and 666 kb, 
respectively. Data quality was assessed by comparison with Sanger 
sequencing–derived G. arboreum sequences and by mapping available 
ESTs to the assembly. Nineteen of the twenty completely sequenced  
G. arboreum BAC clones available from GenBank were recovered in 
our assembly, with >98% sequence identity (Supplementary Table 3). 
Of the 55,894 Sanger sequencing–derived G. arboreum ESTs (>200 bp 
in length) available from NCBI, 96.37% were detected in our assembly 
(Supplementary Table 4). Using a restriction site–associated DNA 
(RAD) linkage map that we constructed during the current study 
based on 24,569 codominant SNP markers, 1,532 Mb or 90.4% of 
the assembled genome was anchored and oriented on 13 pseudo-
chromosomes (Fig. 1, Supplementary Fig. 4 and Supplementary  
Table 5), which contained 97.1% of the predicted gene models. 
Collinear relationships existed between the SNP markers and most of 
the assembled G. arboreum pseudochromosomes, which indicates that 
our assembly is of high quality (Supplementary Fig. 5). Collinearity 
was also observed between our G. arboreum assembly and the tetra-
ploid genetic map reported previously18 (Supplementary Fig. 6 and 
Supplementary Table 6). The GC content of the G. arboreum genome 
was comparable to those for the genomes of G. raimondii5, Theobroma 
cacao19 and Arabidopsis thaliana (Fig. 1e).

Genome annotation
We performed genome annotation by combining results obtained from 
ab initio prediction, homology search and transcriptome alignment. 
As much as 68.5% of the G. arboreum genome was composed of vari-
ous types of repeat sequences (Fig. 1a, Table 1 and Supplementary 
Table 7). We believe that this genome has the greatest amount of 
repeat-containing sequences among sequenced eudicots19–24. Long 
terminal repeat (LTR) retrotransposons accounted for 95.12% of all 
repeat sequences. In comparison with the G. raimondii genome5, the 
G. arboreum genome had noticeable proliferation of Gorge elements, 
whereas LTR Copia elements tended to accumulate in the G. raimondii 
genome (Supplementary Table 8), as has been suggested previously25. 
LTR retrotransposons in G. arboreum appeared to have inserted  
randomly along each chromosome (Fig. 1a), in a pattern substantially 
different from the ones observed for their insertion sites in soybean 
and potato, in which LTRs are clustered near the centromere and are 
found less frequently near telomeres20,21.

A total of 41,330 protein-coding genes were identified in the  
G. arboreum genome, with an average transcript size of 2,533 bp (as 
determined by GLEAN) and a mean of 4.6 exons per gene (Fig. 1b, 
Table 1 and Supplementary Table 9). The genome encoded 431 micro-
RNAs (miRNAs), 10,464 rRNAs, 2,289 tRNAs and 7,619 small nuclear 
RNAs (snRNAs) (Table 1). Among the annotated genes, 85.64% 
encoded proteins that showed homology to proteins in the TrEMBL 
database, and 68.71% were identified in InterPro (Supplementary 
Table 10). Over 96% of predicted coding sequences were supported by 
transcriptome sequencing data (Fig. 1c and Supplementary Table 9), 
which indicated high accuracy of G. arboreum gene predictions from 
the genome sequence. Orthologous clustering of the G. arboreum 
proteome with 3 closely related plant genomes identified 11,699 gene 
families in common, with 739 gene families that were present specifi-
cally in G. arboreum (Supplementary Fig. 7).

Table 1  Global statistics of G. arboreum genome assembly and 
annotation

Category Number
N50 
(kb)

Longest 
(Mb)

Size  
(Mb)

Percent of the 
assembly

Total contigs 40,381 72.0 0.8 1,561 NA

Total scaffolds 7,914 665.8 5.9 1,694 100

Anchored and oriented 
scaffolds

3,740 790 5.9 1,532 90.4

Genes annotated 41,330 105 6.2

���  miRNAs 431 0.05 <0.01

  rRNAs 10,464 1.2 0.07

  tRNAs 2,289 0.2 0.01

  snRNAs 7,619 0.8 0.04

Repeat sequences NA 1,160 68.5

NA, not applicable or not analyzed.

TE coverage (%) 0 100

Gene density (%) 0 100
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Figure 1  Characterization of the G. arboreum cotton genome.  
(a) Percent coverage of TEs in non-overlapping windows (window  
size = 500 kb). Outer tick marks show the calculated lengths of 13  
G. arboreum pseudochromosomes. (b) Gene density estimated on  
the basis of the number of genes in non-overlapping 500-kb windows.  
(c) Transcription state. The transcript level for each gene was estimated 
by averaging values of reads per kilobase of mapped cDNA per million 
reads (RPKM) from different tissues in non-overlapping 500-kb windows. 
(d) Marker density represented by the number of SNPs in non-overlapping 
500-kb windows. (e) GC content estimated on the basis of the percentage 
of G+C nucleotides in 500-kb non-overlapping windows.
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Genome evolution
The current descendants of the two diploid 
cotton species that hybridized to create all 
cultivated allopolyploid cotton species,  
G. arboreum (A2) and G. raimondii (D5), 
exhibit a twofold difference in genome 
size4,26. Molecular phylogenetic analyses27 
suggested a divergence time for G. arboreum 
and G. raimondii of 2–13 million years ago,  
with their common ancestor having diverged from T. cacao  
18–58 million years ago (Fig. 2a).

We scanned the G. arboreum genome for syntenic gene blocks 
identified on the basis of protein-coding sequence similarity. An age 
distribution was calculated for all duplicate gene pairs on the basis of 
the number of transversions at fourfold-degenerate sites. Using 1,917 
paralogous gene pairs of similar age and excluding tandem or local 
duplications, a large peak centered around 0.17 synonymous transver-
sions per site and a second peak at about 0.54 synonymous transver-
sions per site were observed in both the G. arboreum and G. raimondii 
genomes, indicating that a recent and an ancient whole-genome dupli-
cation (WGD) event occurred in cotton (Fig. 2b). Both of these WGD 
events in G. arboreum coincided with those in G. raimondii, which 
were estimated to have occurred at 13–20 and 115–146 million years 
ago5,28. The ancient duplication event corresponds to the ancient 
hexaploidization event that is shared among the eudicots29,30. Using 
a whole-genome alignment approach, we found that both the G. rai-
mondii and G. arboreum genomes showed close collinear relationships 
with the genome of T. cacao. There were 209 and 295 collinear blocks 
covering 82% and 66% of the G. raimondii and G. arboreum genomes, 
respectively (Fig. 2c and Supplementary Table 11). When the  
G. raimondii assembly reported by Paterson et al.6 was used for the 
analysis, a slightly lower number of collinear blocks with higher 
genome coverage were identified (Supplementary Table 11). 
Approximately 50% of the T. cacao genome was aligned with two 
segments in each of the cotton genomes (Fig. 2c), undoubtedly sug-
gesting the existence of a Gossypium-specific WGD event after specia-
tion from the T. cacao lineage.

Orthology maps and retrotransposition analysis
Whole-genome alignment also identified 68,863 orthologous hits 
(anchors) on the 2 cotton genomes, including 33,229 genes for  
G. arboreum and 34,204 genes for G. raimondii. These anchors spanned 
17.1% of the A genome and 35.0% of the D genome (Supplementary 
Table 12). When the G. raimondii assembly by Paterson et al.6 was 
used for the analysis, we observed a total of 63,810 anchors that 
spanned 23% of the A genome and 48% of the D genome, indicating 
an improvement in data quality for the later assembly in this respect 
(Supplementary Table 12). Using these anchors, we found that the 
2 cotton genomes shared 780 syntenic blocks that covered 73% and 

88% of the assembled chromosomes in G. arboreum and G. raimondii,  
respectively (Supplementary Table 13). Chromosomes 1, 4–6 
and 9–13 were highly collinear in the two cotton species, whereas  
large-scale rearrangements were observed on chromosomes 2 and 3 
of G. raimondii and deletions and insertions were observed on chro-
mosomes 7 and 8 of G. arboreum (Fig. 3a,b).

Expansions of transposable element (TE) families have been 
reported in the genome of G. raimondii5. In G. arboreum, two major 
clusters of retrotransposition activity were found at 0–0.5 and  
3.5–4.5 million years ago, with two additional minor sets of retro-
transposition activity present around 1.0 and 7.0–8.0 million years ago 
(Fig. 3c). As a result, the difference in LTR numbers between these 
two cotton species showed two separate peaks at ~0–0.5 and ~3.5 mil-
lion years ago (Fig. 3c). Data analysis indicated that the G. arboreum 
genome tended to harbor more LTRs inserted during the last 0.5 mil-
lion years, whereas extremely low LTR activity was observed in the  
G. raimondii genome over the same period of time. Thus, LTR activi-
ties substantially contributed to the twofold increase in the size of 
the G. arboreum genome, as previously suggested31. We confirmed 
our assertion by analyzing microsyntenic blocks on chromosome 7 of 
both G. arboreum and G. raimondii that were 3.5 and 1.5 Mb in length, 
respectively (Fig. 3d and Supplementary Fig. 8). The gene loci in these 
syntenic blocks were highly collinear, with 191 loci in G. raimondii  
and 216 loci in G. arboreum. However, 4,098 TEs were identified in 
G. arboreum, whereas only 1,542 TEs were found in G. raimondii 
(Fig. 3d). Close to 58% of the TEs reported in Figure 3d were Gorge 
elements in G. arboreum, whereas these elements represented only 
~21% of TEs in G. raimondii (Supplementary Table 14).

Analysis of potential Verticillium wilt resistance genes
Verticillium wilt is a widespread and destructive cotton disease caused 
by the soil-borne fungus pathogen V. dahliae. G. raimondii is nearly 
immune to the pathogen, whereas G. arboreum is easily suscepti-
ble14,15. Genes related to disease resistance (R genes) have critical 
roles during various stages of disease development in plants. Thus far, 
most of the cloned R genes encode NBS domains21,32. We compared 
the G. arboreum genome to the G. raimondii5 and T. cacao19 genome 
sequences to identify differences in the expression patterns of NBS 
domain–encoding genes. We identified 391, 280 and 302 such genes 
in the genomes of G. raimondii, G. arboreum and T. cacao, respectively 
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(Fig. 4a). T. cacao is also susceptible to Verticillium wilt. Phylogenetic 
analysis predicted that there were 192 ancestral NBS-encoding genes 
in the most recent common ancestor (MRCA) of cotton and cocoa 
(Fig. 4a and Supplementary Fig. 9). The greatest differences in the 
numbers of NBS-encoding gene family members in these two cotton 
species existed in the TN and TNL subfamilies (Fig. 4b,c), whereas the 
number of genes in the N subfamily remained relatively unchanged 
(Fig. 4d). Tandem duplications seemed to have a significant role 
in the expansion of the NBS-encoding gene family in G. raimondii 
after its divergence from G. arboreum ~5 million years ago, and seg-
mental loss contributed to its contraction in G. arboreum (Fig. 4e). 
Quantitative RT-PCR (qRT-PCR) analysis of members of the TNL and 
TN subfamilies showed substantial gene expansion in the G. raimondii  
genome and indicated that many orthologs that were not present 
in G. arboreum responded to the pathogen soon after infection. All 
early pathogen-responsive genes came from the G. raimondii genome  
(Fig. 4f), suggesting that expansion and contraction in the numbers of 
NBS-encoding genes in different cotton species may have altered their 
resistance to V. dahliae. Less than 20% of the NBS-encoding genes 
from each of the diploid cotton species could be aligned with avail-
able Gossypium hirsutum ESTs (Supplementary Table 15a). Similarly, 
only 9 of the 53 TN and TNL subfamily members reported in Figure 4  
could be amplified in the tetraploid genome (Supplementary  
Table 15b). These results indicate that NBS-encoding genes have 
evolved rapidly in either diploid or allotetraploid cotton species.

Ethylene is a key modulator of cotton fiber cell growth
Ethylene is an important signaling molecule that promotes cotton 
fiber elongation in G. hirsutum10,11,13. Products of the 1-aminocyclo-
propane-1-carboxylic acid oxidase (ACO) gene are involved in the last 
and rate-limiting step in ethylene biosynthesis during cotton fiber 
development10,11. In G. raimondii ovules collected at 3 days post-
anthesis (dpa), the levels of ACO1 transcripts were ~1,000-fold higher 
and the levels of ACO3 transcripts were ~500-fold higher than in 
G. arboreum (Fig. 5a). These two genes were chosen because they 
accounted for >90% of all ACO transcripts during early fiber develop-
ment (Supplementary Table 16). GrACO1 and GrACO3 showed 98% 
to 99% sequence identity in coding regions, respectively, with their 
counterparts in the G. arboreum genome (data not shown). Dot plots 
of promoter regions showed that a deletion of ~130 bp beginning at 
−470 bp relative to the transcription start site of GaACO1 resulted 
in loss of a putative MYB-binding site (Fig. 5b). The pivotal role of 
MYB transcription factors in regulating cotton fiber development and 
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Figure 4  Analysis of NBS-encoding genes and 
potential molecular targets for resistance to 
Verticillium wilt. (a) Analysis of gene numbers 
in all NBS-encoding disease resistance gene 
families in G. arboreum (Ga), G. raimondii (Gr)  
and T. cacao (Tc). (b–d) Analysis of gene numbers  
in the TN subfamily (b), the TNL subfamily (c) 
and the N subfamily (d). Numbers in circles 
represent the number of family members  
in each genome, and gene numbers for the 
MRCA are shown in rectangles. Numbers with 
plus and minus signs indicate the numbers of 
duplicated and deleted genes, respectively.  
(e) Example of tandem repeat and gene 
deletion of several TN subfamily members 
in G. arboreum, G. raimondii and T. cacao. 
Solid lines link orthologous genes on different 
chromosomes, and dashed lines represent 
inferred orthologous relationships plus 
putative deletions. Sections of G. arboreum chromosome 3 (Ga03) and G. raimondii chromosome 7 (Gr07) are enlarged for clarity, whereas all other 
pseudochromosomes are shown according to the scale bar. (f) qRT-PCR analysis of induced gene expression in the TN and TNL subfamilies upon  
V. dahliae infection. hpi, hours post-infection.
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secondary cell wall biosynthesis has previously been proposed33,34. 
Although GaACO3 and GrACO3 share one common MYB-binding  
site ~150 bp upstream of the transcriptional start site, two small  
segments of mismatch located around −750 bp to −800 bp led to  
loss of two additional MYB-binding sites in G. arboreum (Fig. 5c). 
Very high levels of ACO transcripts in G. raimondii ovules in conjunc-
tion with an ethylene burst5,10 might force an early fiber senescence 
phenotype, whereas the inactivation of ACO gene transcription in  
G. arboreum ovules might be responsible for the short-fiber  
phenotype in this species (Fig. 5d). When all ACO transcripts were 
quantified from different cotton species (Fig. 5e; see Supplementary 
Table 17 for primer sequences), we found that fiber-specific upregu-
lation of ACO expression, as in the case of G. hirsutum, seems to be 
required for normal fiber growth. Inactivation or overproduction of 
ACO, as in G. arboreum and G. raimondii, respectively, might suppress 
fiber development. Further functional characterization of biosynthe-
sis and signaling pathways is required to pin down such a fundamental 
role for ethylene in the regulation of the growth of cotton fiber cells.

DISCUSSION
Comparative genomic analysis showed that LTR insertions and expan-
sions of LTR families contributed substantially to forming the double-
sized G. arboreum genome relative to G. raimondii. The amount of 
sequence encompassing LTR-type retrotransposons increased from 
348 Mb in G. raimondii5 to 1,145 Mb (or 67.6%) in G. arboreum, 
whereas the protein-coding capacities of these two species remained 
largely unchanged (Table 1 and Supplementary Table 7). Typically, 
data obtained from the whole-genome shotgun approach in plants 
with genome sizes exceeding a few hundred megabases are quite dif-
ficult to assemble satisfactorily because of their high TE content35–37. 
Here 90.4% of the 1,694-Mb G. arboreum genome, which is the largest 
of all sequenced eudicots19–24, was anchored and oriented. Problems 

related to high TE content were circumvented by using a high-density 
genetic map that involved 154 F2 RAD lines. A previous study showed 
an association between LTR number and ecogeography in barley, with 
more LTR copies present in the genomes of plants from sites with 
greater environmental stress37. All wild Gossypium species seem to 
be adapted to arid and stressful environments. The different number 
of LTRs in G. arboreum and G. raimondii does not support the eco-
geography hypothesis. There must be other unknown mechanisms 
and causes for the dramatic increase in the number of LTRs in the 
domesticated species G. arboreum.

Qualitative differences in several NBS-encoding subfamilies and 
in ACO gene expression between the G. arboreum and G. raimondii  
genomes were observed. Our data thus identify prime targets in 
deciphering the molecular mechanisms that control resistance to 
Verticillium wilt and fiber cell development. We suggest that this  
G. arboreum genome will be an essential reference for the assembly of 
tetraploid cotton genomes and for evolutionary studies of Gossypium 
species. It also provides an essential tool for the identification, isola-
tion and manipulation of important cotton genes conferring agro-
nomic traits for molecular breeding and genetic improvement.

URLs. Cotton Genome Project (CGP), http://cgp.genomics.org.cn/; 
LASTZ, http://www.bx.psu.edu/miller_lab/; RepeatModeler, http://
www.repeatmasker.org/RepeatModeler.html.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The G. arboreum genome sequence and gene anno-
tation information have been deposited at the Cotton Genome Project 
(CGP), available at http://cgp.genomics.org.cn/, and all raw sequencing  
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ethylene production in the regulation of cotton fiber elongation. Promoters for GrACO1 and GrACO3 (top) are potentially bound to more MYB protein 
than their counterparts in G. arboreum (bottom). Curved lines represent corresponding ACO transcripts, and the gradient bar shows the amount of 
ethylene production from low (white) to high (black). Scale bars, 1.0 cm. (e) Comparison of total ACO transcript levels in three cotton species on the 
basis of qRT-PCR analysis (n = 3 biological replicates). As shown in d, G. raimondii produces almost no mature fiber and G. arboreum produces short 
fiber of ~1.5 cm in length; G. hirsutum produces fiber usually of >3.0 cm in length.
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data are accessible through the NCBI Sequence Read Archive (SRA) 
under accession SRA150181.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Strain selection. We used DNA samples prepared from a specific genetic 
line (cultivar Shixiya1, SXY1) of the cultivated diploid cotton G. arboreum for 
sequencing and assembly. This line was brought to near homozygosity after 
18 successive generations of self-fertilization. G. arboreum cv. Shixiya1 (SXY1) 
and G. raimondii D5-3 (CMD#10) plants were maintained in the National Wild 
Cotton Nursery in Sanya, Hainan Province, China.

DNA extraction, library construction and sequencing. Fresh young leaves 
were collected, immediately frozen in liquid nitrogen and stored at −80 °C 
until DNA extraction. We used the standard phenol-chloroform method for 
DNA extraction with RNase A and proteinase K treatment to prevent RNA 
and protein contamination10. Genomic libraries were prepared following the 
manufacturer’s standard instructions and sequenced on the Illumina HiSeq 
2000 platform. To construct paired-end libraries, DNA was fragmented by 
nebulization with compressed nitrogen gas, and DNA ends were blunted before 
adding an A base to each 3′ end. DNA adaptors with a single T-base 3′-end 
overhang were ligated to the above products. Ligation products were puri-
fied on 0.5%, 1% or 2% agarose gels, which each targeted a specific range of 
insert sizes. We constructed G. arboreum genome sequencing libraries with 
insert sizes of 180 bp, 250 bp, 350 bp, 500 bp, 800 bp, 2 kb, 5 kb, 10 kb, 20 kb 
and 40 kb.

Genome assembly. All sequences were assembled with SOAPdenovo soft-
ware16,17. Unusable reads were filtered out before assembly, including (i) reads 
that contained sequences with >10% “N” bases, (ii) reads with low-quality 
data (i.e., ≤7) for 65% of bases for short insert sizes or 80% of bases for long 
insert sizes, (iii) reads that contained >10 bp of adaptor sequence, (iv) reads 
with >10 bp that overlapped between two ends of reads of short insert size and  
(v) reads with identical sequences at the two ends.

The 193.6 Gb of clean data were assembled to contigs and scaffolds using 
the de Bruijn graph–based assembler of SOAPdenovo16,17 with the following 
four steps.

Constructing K-mer graphs. SOAPdenovo split reads with an insert size of 
<1,000 bases into K-mers to use in constructing the de Bruijn graphs. The 
parameters of this step in the cotton genome assembly were as follows: 
SOAPdenovo-127mer pregraph –s cotton_0308.lib –K 75 –R –p 24 –D –o 
GOSakoD>pregraph.log.

Building contigs. SOAPdenovo built contigs using the simplified de Bruijn 
graphs. The parameters of this step in the cotton genome assembly were as  
follows: SOAPdenovo-127mer contig –g GOSakoD –R >contig.log.

Linking scaffolds. SOAPdenovo aligned paired-end reads on the contig 
sequences. We subsequently calculated the total number of paired-end rela-
tionships between each pair of contigs and analyzed the rates of conflict-
ing and consistent paired ends. A connecting relationship was regarded as 
a credible relationship between two contigs when that relationship met the 
given conditions. We then linked the contigs into scaffolds with N bases in a 
step-by-step manner from the paired-end reads with the shortest insert size to 
the paired-end reads with the longest insert size. We determined the orienta-
tion of the scaffolds on the basis of the paired-end relationship between reads 
and prescaffolds while we constructed the scaffolds. A reliable link was built 
between 2 contigs when there were ≥3 paired-end reads for short inserts or 
≥5 paired-end reads for long inserts. We started with the smallest libraries, 
using the RANK parameter of the configuration files to control the order of the 
libraries. The parameters of this step in the cotton genome assembly were as 
follows: SOAPdenovo-127mer map –s cotton_0308.lib –p 16 –g GOSakoD –k 
39 >map.log; SOAPdenovo-127mer scaff –g GOSakoD –F –p 16 >scaff.log.

Filling gaps. We used GapCloser to fill gaps in the scaffolds. This program 
makes use of reads for local assembly within the gaps by aligning the other 
ends of paired-end reads onto scaffolds. The parameters were as follows: 
GapCloser –a ./GOSakoD.scafSeq –b ./cotton_0330.lib –o ./GOSakoD.scaf-
Seq.FG –t 64.

Genetic map construction. Genetic linkage maps were constructed to develop 
the integrated genome map for anchoring the scaffolds, using 154 individuals  
from an F2 population of a cross between G. arboreum cultivars SXY1 and 
AnhuiFuyangZisedahua (AFZ). Young leaves of parents and individuals 
from the F2 population were collected for DNA extraction using the Plant 
Genomics DNA kit (Qiagen). Genomic DNA from this mapping population 
was digested with the restriction endonuclease EcoRI and processed into RAD 
libraries38. Every 20 cotton individuals were pooled into 1 sequencing library 
with nucleotide multiplex identifiers (4, 6 and 8 bp), and each sequencing 
library was barcoded. Approximately 1,600 Mb of 50-bp reads (10 Mb of read 
data for each progeny on average) was generated on the HiSeq 2000 next- 
generation sequencing platform. The SNP calling process was carried out using 
the SOAP2+SOAPsnp pipeline39. JoinMap4.0 (ref. 40) was used to conduct the 
linkage analysis. A χ2 test was used to determine whether the RAD-based SNP 
markers corresponded with the expected segregation ratio. Unusable markers 
(P < 0.01) were filtered out before a genetic map was constructed. ABH-style 
markers were used to build the main framework of 13 linkage groups, and a 
logarithm of odds (LOD) score of 7 was initially set as the linkage threshold for 
linkage group identification. AC-style markers were also included to expand 
the length of linkage groups by reducing the LOD value to 3. All high-quality 
markers were used to construct the consensus maps with the F2 population in 
JoinMap4.0. We calculated the recombination fractions between all pairs of 
SNP markers in a scaffold and chose the SNP marker that had the minimum 
recombination fraction in the sum. Scaffold order was determined by tag SNPs, 
and inner SNPs were then used to orient the scaffolds.

Annotation of transposable elements. We searched the genome for tan-
dem repeats using the software program Tandem Repeats Finder41. Both  
homology-based and de novo approaches were used to find TEs. The homology- 
based approach involved applying commonly used databases of known 
repetitive sequences along with such programs as RepeatProteinMask and 
RepeatMasker42. To identify DNA-level TEs, we used Repbase43 along with 
a database of plant repeating sequences and our de novo TE library to find 
repeats with RepeatMasker. We used four software programs, LTR_FINDER44, 
PILER45, RepeatModeler and RepeatScout46, to generate the de novo repeat 
library. These programs predict repeats in different ways. LTR_FINDER 
retrieves full-length LTR retrotransposons, which usually contain ~18 bp of 
sequence that is complementary to the 3′ tail of certain tRNAs. PILER searches 
for repeats in the genome by aligning the genome with itself. RepeatScout 
builds a consensus sequence on the basis of lmer using the fit-preferred align-
ment score. RepeatModeler uses two ab initio repeat prediction programs 
(RECON and RepeatScout), which identify repeat element boundaries and 
family relationships among sequences. Intact LTRs were predicted using 
LTR_STRUC47 Windows-based software, and solo LTRs were predicted on 
the basis of comparison with intact ancestor LTRs. Single-copy gene families 
were used to construct the phylogenetic tree, and syntenic blocks were identi-
fied by MCscan48.

Gene prediction. Homology-based gene prediction. The target locations of 
homologous proteins were obtained by aligning the protein sequences of  
A. thaliana, Carica papaya, Populus trichocarpa, G. raimondii, Populus  
trichocarpa, T. cacao and Vitis vinifera to the G. arboreum genome using 
TBLASTN with an E-value parameter of 1 × 10−5. Proteins encoded by TEs 
were filtered out before alignment. We next extracted target sequences from 
the genome, including a 2,000-bp extension at both ends of the alignment with 
intron regions, and again aligned the homologous protein sequences to these 
DNA fragments using GeneWise49 (with parameters –trev –sum –genesf). 
Coding sequences were aligned against the genome using BLAT to generate 
spliced alignments, and overlapping sequences were filtered out to link the 
spliced alignments using PASA50.

De novo gene prediction. AUGUSTUS (version 2.5.5)51 and SNAP (version 
2006-07-28)52 were applied for de novo gene prediction using gene model 
parameters trained by A. thaliana. We masked all TEs from the genome before 
gene prediction and filtered out all short coding regions that were <150 bp in 
length during the process.
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Transcriptome alignment. We used TopHat53 to map raw reads of cDNA 
sequence to the G. arboreum genome sequence to identify potential areas of 
exons in addition to donor or receptor sites with the following parameters: –p 
4-max-intron-length 20,000 –m 1 –r 20-mate-std-dev 20. Cufflinks53 software 
was used to assemble potential alignments to transcripts, with the following 
parameters: –I 20,000 –p 4. To obtain complete gene models, we used the 
fifth-order Markov model to predict ORFs.

Combination of all methods. Data derived from homology-based, de novo and 
transcriptome alignment methods were integrated to generate a consensus 
gene set by GLEAN54 with default parameters.

Phylogenetic analysis. Gene Ontology (GO)55 terms for each gene were 
obtained from its corresponding InterPro entry. We used OrthoMCL56 to 
confirm the genes that were orthologous among four species (A. thaliana,  
G. arboreum, G. raimondii and T. cacao). All-versus-all BLASTP (E value <  
1 × 10−5) comparison of all protein sequences for each species was performed, 
and orthologous genes were clustered by OrthoMCL (inflation parameter: 1.5). 
We performed multiple alignments of protein sequences with MUSCLE57 for 
each single-copy gene family and converted the protein alignments to coding 
sequences using a Perl script. Phase-1 sites were extracted from each family  
and concatenated to one supergene for every species, and Mrbayes 3.1.2  
(ref. 58) was used to construct the phylogenetic tree. Branch-specific Ka/Ks 
ratios (the number of nonsynonymous substitutions per nonsynonymous 
site, Ka, over the number of synonymous substitutions per synonymous  
site, Ks) were calculated using codeml in the PAML59 software package with 
the branch model.

Syntenic analysis and whole-genome alignment. A BLASTP search (with an  
E-value cutoff of 1 × 10−5) was performed to identify paralogous genes. Syntenic 
blocks (with at least five genes per block) were identified by MCscan48. For the 
alignment results between these, each aligned block represented the ortholo-
gous pair derived from the common ancestor, and the sequences that contained 
the genes were used to show the intergenome relationships with their length 
information. The fourfold-degenerate value of the blocks was calculated as 
revised by the HKY model, and whole-genome alignment was carried out by 
LASTZ (see URLs) between G. raimondii and G. arboreum after repeat regions 
were first masked.

LTR analysis. Intact LTRs from the A genome and D genome were predicted 
using LTR_STRUC47 Windows-based software. We constructed ancestor sub-
families on the basis of the following two rules: (i) family members had to share 
the same polypurine tract sequences and primer-binding-site sequences and 
(ii) the E value had to be <1 × 10−10 among transposable gene sequences. For 
each family, we aligned all intact LTRs with MUSCLE57 and manually cor-
rected the alignments using MEGA5.5 (ref. 60). We then constructed ancestor 
sequences for this family using the cons program (contained in the EMBOSS 
package61). To find more solo LTRs, we used the ancestor sequences for dif-
ferent families as queries for LTR prediction based on the standard prediction 
pipeline, and we followed the 80-80-80 rule (identity, >0.8; align rate, >80%; 
alignment length, >80 bp)62 to find which family the solo LTRs belonged to. 
All intact LTRs and solo LTRs were used to calculate the insert time with the 
formula time = K/r (where K is the distance between all alignment pairs and  
r is the rate of nucleotide substitution). The value was set to 7 × 10−9, and K was 
calculated with the distmat program implemented in the EMBOSS package61 
with the Kimura two-parameter model.

Analysis of disease resistance– and fiber development–related genes. 
The largest class of characterized disease resistance (R) genes encodes intra
cellular proteins that contain a nucleotide-binding site (NBS) and C terminus 
with leucine-rich repeats (LRRs)63. These genes are rather abundant in plant 
genomes and have an important role in mediating resistance to pathogens19,64. 

Resistance-related genes were identified using the HMMER 3.0 (ref. 65) 
software package. CAFE66 was used to predict the expansion and contraction 
of gene numbers on the basis of the topological gene tree.

ACO genes in G. raimondii and G. arboreum were obtained on the basis of 
a homology search with the ACO genes in G. hirsutum. Dot plot figures were 
generated using a word size of 9. All fold-change values were calculated with 
respect to the G. arboreum expression level at 0 dpa. For qRT–PCR analysis, 
total RNA (~2 µg) was reverse transcribed in a 20-µl reaction mixture using 
SuperScript II reverse transcriptase (Invitrogen). After the reaction, 1-µl ali
quots were used as a template for PCR amplification with gene-specific primers.  
As an internal control, the UBQ7 transcript was used to quantify the relative 
transcript level of each target gene in each tissue type. Three biological repli-
cates were analyzed for all qRT-PCR experiments.
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