Fields

The Field Axioms and their Consequences

Definition 1 (The Field Axioms) A field is a set \mathbb{F} with two operations, called addition and multiplication which satisfy the following axioms (A1-5), (M1-5) and (D).

(A) Axioms for addition

(A1) $x, y \in \mathbb{F} \Longrightarrow x+y \in \mathbb{F}$
(A2) $x+y=y+x$ for all $x, y \in \mathbb{F}$ (addition is commutative)
(A3) $(x+y)+z=x+(y+z)$ for all $x, y, z \in \mathbb{F}$ (addition is associative)
(A4) \mathbb{F} contains an element 0 such that $0+x=x$ for every $x \in \mathbb{F}$.
(A5) For each $x \in \mathbb{F}$ there is an element $-x \in \mathbb{F}$ such that $x+(-x)=0$.
(M) Axioms for multiplication
(M1) $x, y \in \mathbb{F} \Longrightarrow x y \in \mathbb{F}$
(M2) $x y=y x$ for all $x, y \in \mathbb{F}$ (multiplication is commutative)
(M3) $(x y) z=x(y z)$ for all $x, y, z \in \mathbb{F}$ (multiplication is associative)
(M4) \mathbb{F} contains an element $1 \neq 0$ such that $1 x=x$ for every $x \in \mathbb{F}$.
(M5) For each $0 \neq x \in \mathbb{F}$ there is an element $\frac{1}{x} \in \mathbb{F}$ such that $x\left(\frac{1}{x}\right)=1$.

(D) The distributive law

(D) $x(y+z)=x y+x z$ for all $x, y, z \in \mathbb{F}$

Example 2 The rational numbers, \mathbb{Q}, real numbers, \mathbb{R}, and complex numbers, \mathbb{C} are all fields. The natural numbers \mathbb{N} is not a field - it violates axioms (A4), (A5) and (M5). The integers \mathbb{Z} is not a field - it violates axiom (M5).

Theorem 3 (Consequences of the Field Axioms)

(A) The addition axioms imply
(a) $x+y=x+z \Longrightarrow y=z$
(b) $x+y=x \Longrightarrow y=0$
(c) $x+y=0 \Longrightarrow y=-x$
(d) $-(-x)=x$
(M) The multiplication axioms imply
(a) $x \neq 0, x y=x z \Longrightarrow y=z$
(b) $x \neq 0, x y=x \Longrightarrow y=1$
(c) $x \neq 0, x y=1 \Longrightarrow y=\frac{1}{x}$
(d) $x \neq 0,1 /(1 / x)=x$
(F) The field axioms imply
(a) $0 x=0$
(b) $x \neq 0, y \neq 0 \Longrightarrow x y \neq 0$
(c) $(-x) y=-(x y)=x(-y)$
(d) $(-x)(-y)=x y$

Selected Proofs:

(A.a):

$$
\begin{array}{rlrl}
x+y=x+z & \Longrightarrow-x+(x+y)=-x+(x+z) & \\
& \Longrightarrow(-x+x)+y=(-x+x)+z & & (\text { by axiom }(\mathrm{A} 3)) \\
& \Longrightarrow(x+(-x))+y=(x+(-x))+z & & (\text { by axiom }(\mathrm{A} 2)) \\
& \Longrightarrow 0+y=0+z & & (\text { by axiom }(\mathrm{A} 5)) \\
& \Longrightarrow y=z & & (\text { by axiom }(\mathrm{A} 4))
\end{array}
$$

(F.a):

$$
\begin{array}{rlrl}
0 \cdot x & =(0+0) x & & (\text { by axiom }(\mathrm{A} 4)) \\
& =0 \cdot x+0 \cdot x & & (\text { by axiom }(\mathrm{D})) \\
\Longrightarrow 0 \cdot x=0 & & \text { (by part A.b, above) }
\end{array}
$$

(F.b):

$$
\begin{aligned}
x \neq 0, x y=0 & \Longrightarrow \frac{1}{x}(x y)=\frac{1}{x} 0=0 & & \text { (by part F.a and axiom (M2)) } \\
& \Longrightarrow y=0 & & \text { (by axioms (M3), (M2), (M5), (M4)) }
\end{aligned}
$$

(F.c): As a preliminary computation we show that $(-1) x=-x$. By part (A.c), this follows from

$$
x+(-1) x=1 \cdot x+(-1) x=(1+(-1)) x=0 \cdot x=0
$$

(by axioms (M4), (M2), (D), (A5) and part (F.a)). This implies

$$
\begin{aligned}
& (-x) y=((-1) x) y=(-1)(x y)=-(x y) \\
& x(-y)=x((-1) y)=(-1)(x y)=-(x y)
\end{aligned}
$$

Ordered Fields

Definition 4 (Ordered Fields) An ordered field is a field \mathbb{F} with a relation, denoted $<$, obeying the

(O) Order axioms

(O1) For each pair $x, y \in \mathbb{F}$ precisely one of $x<y, x=y, y<x$ is true.
(O2) $x<y, y<z \Longrightarrow x<z$
(O3) $y<z \Longrightarrow x+y<x+z$
(O4) $x>0, y>0 \Longrightarrow x y>0$
We also use the notations " $x>y$ " for " $y<x$ ", and " $x \leq y$ " for " $x<y$ or $x=y$ ", and " $x \geq y$ " for " $y<x$ or $x=y$ ".
An ordered set is a set with a relation $<$ obeying (O1) and (O2).

Example $5 \mathbb{Q}$ and \mathbb{R} are ordered fields.

Theorem 6 (Consequences of the Order Axioms) In every ordered field
(a) $x>0 \Longrightarrow-x<0$
(b) $x<0 \Longrightarrow-x>0$
(c) $y<z, x>0 \Longrightarrow x y<x z$
(d) $y<z, x<0 \Longrightarrow x y>x z$
(e) $x \neq 0 \Longrightarrow x^{2}>0$
(f) $1>0$
(g) $x>0 \Longrightarrow \frac{1}{x}>0$
(h) $0<x<y \Longrightarrow 0<\frac{1}{y}<\frac{1}{x}$

Proof:

(a) $x>0 \stackrel{(O 3)}{\Longrightarrow} x+(-x)>0+(-x) \stackrel{(A 4),(A 5)}{\Longrightarrow} 0>-x$
(b) $x<0 \xrightarrow{(O 3)} x+(-x)<0+(-x) \stackrel{(A 4),(A 5)}{\Longrightarrow} 0<-x$
(c) $y<z \xrightarrow{(O 3),(A 2,5)} z-y>0 \xrightarrow{(O 4)} x(z-y)>0 \xrightarrow{(D)} x z-x y>0 \stackrel{(O 3),(A 2,4,5)}{\Longrightarrow} x z>x y$
(d) $x<0, z-y>0 \xlongequal{(c)}(z-y) x<\overbrace{(z-y)(0)}^{0} \stackrel{(D)}{\Longrightarrow} x z-x y<0 \stackrel{(O 3),(\text { (A4), (A5) }}{\Longrightarrow} x y>x z$
(e) $x>0 \stackrel{(O 4)}{\Longrightarrow} x^{2}>0$ and $x<0 \stackrel{(b)}{\Longrightarrow}-x>0 \stackrel{(O 4)}{\Longrightarrow} x^{2}=(x)^{2}>0$
(f) $1=1^{2} \stackrel{(e)}{\Longrightarrow} 1>0$
(g) Let $x>0$. If $\frac{1}{x}<0$, then $-\frac{1}{x}>0 \stackrel{(O 4)}{\Longrightarrow}\left(-\frac{1}{x}\right) x>0 \Longrightarrow-1>0 \xrightarrow{(a)} 1<0$ which contradicts part (e).
(h) Multiply both sides of $x<y$ by $\frac{1}{x} \frac{1}{y}>0$. This gives, by part (c), $\frac{1}{y}<\frac{1}{x}$. Part (f) gives $\frac{1}{y}>0$.

Theorem 7 (\mathbb{C} cannot be ordered.) There does not exist a relation $<$ making \mathbb{C} into an ordered field.

Proof: Homework.

