
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document 
under the terms of the OWASP License.

The OWASP Foundation

OWASP AppSec 
DC 2010

http://www.owasp.org 

H.....t.....t....p....p....o....s....t

Wong Onn Chee 
OWASP Singapore Lead 
ocwong@usa.net

Tom Brennan
OWASP Foundation
tomb@owasp.org

11 Nov 2010

mailto:ocwong@usa.net
mailto:ocwong@usa.net
mailto:tomb@owasp.org
mailto:tomb@owasp.org


OWASP 2

Agenda

Introduction to Layer 7 DDOS attacks
Different types of Layer 7 DDOS web attacks
Analysis of HTTP POST DDOS attack
Demo



OWASP 3

First, there was Layer 4 DDOS......

Past DDOS attacks were mainly Layer 4 (TCP) 
attacks.



OWASP 4

Layer 4 DDOS attacks

Reach bandwidth or connection limits of 
hosts or networking equipment.

Fortunately, current anti-DDOS solutions are 
effective in handling Layer 4 DDOS attacks.



OWASP 5

Then, there were Layer 7 DDOS attacks

Operates at the application protocol level 
(OSI Layer 7).

Eg. HTTP(S), SMTP, FTP and etc. 



OWASP 6

Effectiveness of Layer 7 DDOS attacks

Legitimate TCP or UDP connections. Difficult to 
differentiate from legitimate users => higher 
obscurity.

Requires lesser number of connections => 
higher efficiency.

Reach resource limits of services. 
Can deny services regardless of hardware 
capabilities of host => higher lethality.



OWASP 7

Agenda

Introduction to Layer 7 DDOS attacks
Different types of Layer 7 DDOS web attacks
Analysis of HTTP POST DDOS attack
Demo



OWASP 8

Types of Layer 7 DDOS web attacks

Excludes causes related to stupid or inefficient 
codes. (Yes! You can DOS yourself)

We will focus on protocol weaknesses of HTTP 
or HTTPS.

HTTP GET => Michal Zalewski, Adrian Ilarion 
Ciobanu, RSnake (Slowloris)

HTTP POST => Wong Onn Chee



OWASP 9

HTTP GET DDOS attack

First highlighted by Michal Zalewski and Adrian 
Ilarion Ciobanu in 2007
http://www.securityfocus.com/archive/1/456339/30/0/threaded

Popularized in 2009 by Rsnake with the free 
tool, Slowloris.

Slowloris used time-delayed HTTP headers to 
hold on to HTTP connections and exhaust web 
server threads or resources. 

Can evade Layer 4 DDOS protection systems. 
More info can be found at 
http://ha.ckers.org/blog/20090617/slowloris-http-dos/



OWASP 1
0

HTTP GET DDOS attack

Apache Foundation disagreed this is a bug and 
had no plans to “fix it”. To AF, waiting for the 
HTTP headers to complete sending is a basic 
and inherent behavior of web servers.

Microsoft IIS imposes a timeout for HTTP 
headers to be sent. Any HTTP connection which 
exceeds the headers timeout will be closed, 
hence rendering HTTP GET attacks ineffective 
against IIS web servers.



OWASP 11

Limitations of HTTP GET DDOS attack

Does not work on IIS web servers or web 
servers with timeout limits for HTTP headers.

Easily defensible using popular load balancers, 
such as F5 and Cisco, reverse proxies and 
certain Apache modules, such as mod_antiloris.

Anti-DDOS systems may use “delayed 
binding”/“TCP Splicing” to defend against HTTP 
GET attacks.



OWASP 1
2

Agenda

Introduction to Layer 7 DDOS attacks
Different types of Layer 7 DDOS web attacks
Analysis of HTTP POST DDOS attack
Demo



OWASP 1
3

HTTP POST DDOS attack

First discovered in Sep 2009 by Wong Onn 
Chee and his team.

Escalated to Microsoft and AF in Q1 2010. Both 
interpreted this to be a protocol bug.

Apache: “What you described is a known attribute (read: flaw) of the 
HTTP protocol over TCP/IP.  The Apache HTTP project declines to treat this 
expected use-case as a vulnerability in the software.”

MS: “While we recognize this is an issue, this issue does not meet our 
bar for the release of a security update. We will continue to track this issue 
and the changes I mentioned above for release in a future service pack.”



OWASP 1
4

How HTTP POST DDOS attack works 
(HTTP/1.0)

Uses HTTP POST requests, instead of HTTP 
GET which is used by Slowloris.

“A POST request includes a message body in 
addition to a URL used to specify information for 
the action being performed. This body can use 
any encoding, but when webpages send POST 
requests from an HTML form element the 
Internet media type is "application/x-www-form-
urlencoded".  (source: Wikipedia - “POST (HTTP)”)”



OWASP 1
5

How HTTP POST DDOS attack works 
(HTTP/1.0) (cont'd)

The field “Content-Length” in the HTTP Header 
tells the web server how large the message body 
is, for e.g., “Content-Length = 1000” 

The HTTP Header portion is complete and sent 
in full to the web server, hence bypassing IIS 
inherent protection.



OWASP 1
6

How HTTP POST DDOS attack works 
(HTTP/1.0) (cont'd)

For e.g., Content-Length = 1000 (bytes)
The HTTP message body is properly URL-

encoded, but ......

.....is sent at, again for e.g., 1 byte per 110 
seconds.

Multiply such connections by 20,000 and your 
IIS web server will be DDOS. 

Most web servers can accept up to 2GB worth of 
content in a single HTTP POST request.



OWASP 1
7

Sample code to simulate HTTP POST DDOS 
attack (HTTP/1.0)
private String getRequestHeader() {

String requestHeader = "";

requestHeader += param.getMethod() + " " + param.getUrl() + " HTTP/1.1\r\n";

requestHeader += 

  "Host: " + param.getHost() + "\r\n"

+ "User-Agent: " + httpUserAgent + "\r\n"

+ "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n"

+ "Accept-Language: en-us,en;q=0.5\r\n"

+ "Accept-Encoding: gzip,deflate\r\n"

+ "Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n"

if (param.getContentLength() > 0) {

requestHeader += "Connection: keep-alive\r\n";

requestHeader += "Keep-Alive: 900\r\n";

requestHeader += "Content-Length: " + param.getContentLength() + "\r\n";

requestHeader += "\r\n";

}

return requestHeader;

}

Construction of legitimate
headers

Random values for 
Content-Length header



OWASP 1
8

Sample code to simulate HTTP POST DDOS 
attack (HTTP/1.0)

Get random data -->

public static byte getRandomByte() {

int character = gen.nextInt();

return (byte) character;

}

Send random data -->

public void sendXHeader() throws IOException {

StringBuffer header1 = new StringBuffer();

StringBuffer header2 = new StringBuffer();

int lengthOfXA = param.getRandomLengthOfXA();

int lengthOfXB = param.getRandomLengthOfXB();

for (int i=0 ; i<lengthOfXA ; i++) {

header1.append(Misc.getRandomByte());

}

Byte randomness

Time interval randomness



OWASP 1
9

Sample code to simulate HTTP POST DDOS 
attack (HTTP/1.0)
for (int i=0 ; i<lengthOfXB ; i++) {

header2.append(Misc.getRandomByte());

}

socket.getOutputStream().write(("X-" + header1.toString() + ": " + header2.toString() + "\r\n").getBytes());

socket.getOutputStream().flush();

}

public void sendPOSTBodyRandomByte() throws IOException {

socket.getOutputStream().write(Misc.getRandomByte());

socket.getOutputStream().flush();

}

Sends the payload



OWASP 2
0

Why HTTP POST DDOS attack works
Being “kind” folks (like all of you), web servers 

will “obey” the “Content-Length” field to wait for 
the remaining message body to be sent.

By waiting for the complete message body to be 
sent, web servers can support users with slow or 
intermittent connections.

Hence, any website which has forms, i.e. 
accepts HTTP POST requests, is susceptible to 
such attacks.

Common uses of HTTP POST requests: login, 
uploading photo/video, sending webmail / 
attachments, submitting feedback and etc.



OWASP 2
1

Why HTTP POST DDOS attack works
This attack can evade Layer 4 detection 

techniques as there is no malformed TCP, just 
like Slowloris.

Unlike Slowloris, there is no delay in sending 
HTTP Header, hence nullifying IIS built-in 
defense, making IIS vulnerable too.

Size, character sets and time intervals can be 
randomised to foil any recognition of Layer 7 
traffic patterns by DDOS protection systems.

Difficult to differentiate from legit connections 
which are slow.



OWASP 2
2

Interesting findings
IIS 6.0 (W2K3) web server is vulnerable to this 

attack even when there is no form. Apache, IIS 7 
or later require presence of forms for this attack 
to work.

Apache requires lesser number of connections 
due to mandatory client or thread limit in 
httpd.conf.

Besides its “unlimited connections” settings, a 
default IIS configuration will go down with 20,000 
HTTP POST DDOS connections, regardless of 
hardware capabilities. This is due to the rapid fail 
protection sandbox feature in IIS.



OWASP 2
3

Interesting findings
IIS with 8 cores and 16GB RAM = IIS with 2 

cores and 2GB RAM
Only 20k HTTP POST connections to DDOS 
either IIS!

In HTTP/1.1 where chunked encoding is 
supported and there is no “Content-Length” 
HTTP header, the lethality is amplified. 

The web server does not even know up front 
from the headers how large is the POST 
request!



OWASP 2
4

Interesting findings
Botnet operators had begun their “3G upgrade” 

to include Layer 7 DDOS techniques. Some may 
have completed their upgrade to include HTTP 
POST.

We believe Layer 7 attacks may supersede 
Layer 4 attacks as the modus operandi of DDOS 
botnets in this new decade.



OWASP 2
5

Potential countermeasures

Apache
(experimental) mod_reqtimeout
LimitRequestBody directive

IIS
No reply from Microsoft on the availability of the 

proposed controls in the latest service pack for IIS.



OWASP 2
6

Potential countermeasures

General
Limit the size of the request to each form's 

requirements. 
For e.g. a login form with a 20-char username field 
and a 20-char password field should not accept a 1KB 
POST message body

Identify the 95% or 99% percentile of normal access 
speed range to your website. Establish a speed floor 
for the outliers.

With the speed floor and maximum allowable body 
size for each form, establish a request timeout for 
each form (= Tedious! Good news for infosec folks?) 



OWASP 2
7

Weaknesses of countermeasures

Hackers can “sense” the speed floor and 
execute attacks just above the speed floor.

Most (broadband) home users have uplink 
speed of at least 256 kbps. But we cannot set 
speed floors at 256 kbps. 

Speed floors = not friendly to overseas 
customers/visitors or local ones using mobile 
devices.

HTTPS will be a challenge for front appliance-
based defensive systems.



OWASP 2
8

Future “exploits”? - WebSockets 

WebSockets in HTML5 (draft expires February 
17, 2011) http://www.whatwg.org/specs/web-socket-protocol/

“Conceptually, WebSocket is really just a layer 
on top of TCP that adds a Web "origin"-based 
security model for browsers; adds an addressing 
and subprotocol naming mechanism to support 
multiple services on one port and multiple host 
names on one IP address; layers a framing 
mechanism on top of TCP to get back to the IP 
packet mechanism that TCP is built on, but 
without length limits; and reimplements the 
closing handshake in-band....”



OWASP 2
9

Future “exploits”? - WebSockets  

6.3.  Data framing
The server must run through the following steps to process the bytes sent by 

the client.  If at any point during these steps a read is attempted but fails 
because the WebSocket connection is closed, then abort.

1.  Try to read a byte from the client.  Let /frame type/ be that byte.
2. Try to read eight more bytes from the client.  Let /frame length/ be the 

result of interpreting those eight bytes as a big-endian 64 bit unsigned 
integer.
(e.g. 99,999,999)

…….

 99,999,999 / 1 byte per 110 secs 
= 10,999,999,890 secs
= 127,315 days
= 349 years



OWASP 3
0

Agenda

Introduction to Layer 7 DDOS attacks
Different types of Layer 7 DDOS web attacks
Analysis of HTTP POST DDOS attack
Demo



OWASP 3
1

Demo

Old = you may already know about the 
components.

New = New trend of “weaponized” online games 
which are web-based or client-based.

Desktop firewalls do not block outgoing Port 80 
connections once the process is whitelisted. 
(Need to be whitelisted, else game will not run)

The one we are showing is a simple game using 
a self-signed Java applet. (good old Java 
sandbox bypass)


