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The l imitat ions of diagnost ic "accuracy"  as a measure 
of decision performance require introduct ion of the 
concepts of the "sens i t iv i ty"  and "spec i f i c i ty "  of a 
diagnostic test, These measures and the related in- 
dices, " t rue posit ive f ract ion" and "false posi t ive frac- 
t ion,"  are more meaningful than " 'accuracy," yet do 
not provide a unique description of diagnost ic perfor- 
mance because they depend on the arbitrary selection 
of a dec is ion threshold. The receiver operating 
characteristic (ROC) curve is shown to be a simple 
yet complete empirical description of this decision 
threshold effect, indicat ing all possible combinat ions 
of the relative frequencies of the various kinds of cor- 
rect and incorrect decisions. Practical experimental 

techniques for measuring ROC curves are described, 
and the issues of case selection and curve-fitting are 
discussed briefly. Possible general izat ions of conven- 
t ional ROC analysis to account for decision perfor- 
mance in complex diagnostic tasks are indicated. 
ROC analysis is shown to be related in a direct and 
natural way to cost /benef i t  analysis of diagnostic de- 
cision making. The concepts of "average diagnostic 
cost"  and "average net benefit" are developed and 
used to identify the optimal compromise among 
various kinds of diagnostic error. Finally, the way in 
which ROC analysis can be employed to opt imize 
diagnost ic strategies is suggested, 

H OW CAN WE measure the quality of 
diagnostic information and of diagnostic 

decisions in a meaningful way? That basic ques- 
tion has become increasingly important  in 
recent years as an abundance of new diagnostic 
tests have been introduced, and as government 
and the public grow ever more insistent that the 
medical community must justify the costs and 
possible risks of diagnostic procedures. 

The question must be addressed, for it will 
not go away. Any meaningful approach to the 
evaluation of diagnostic tests must inevitably in- 
volve many complex technical and social issues, 
and one cannot reasonably expect that the 
typical practicing physician can or should 
master all of the subtleties involved in evalua- 
tion analysis. Still, the basic concepts upon 
which evaluat ion analysis  rests  are quite 
straightforward and need not be regarded as 
mysterious. Although these concepts are (un- 
fortunately) often clothed in seemingly occult 
jargon (because of the need for concise and 
precise terminology) the principles themselves 
are mostly formalized common sense, or at 
least can be recognized as reasonable when 
explained in plain language. 

This monograph will attempt to guide the 
reader through the basic principles of an ap- 
proach that provides a structure for the mean- 
ingful evaluation of diagnostic techniques. Al- 
though this approach is essentially quantitative, 
its merit does not depend solely on the use of 
numbers. The approach focuses attention on the 
issues involved in diagnostic evaluation and 
diagnostic decision making, and the reader will 
likely find that he has informally considered 
some or all of these issues already. 

DILEMMAS IN EVALUATING 
DIAGNOSTIC TESTS 

What Does "'Accuracy" Mean? 

Any assessment of diagnostic performance 
seems to require some comparison of diagnostic 
decisions with "truth."  Perhaps the simplest 
measure of diagnostic decision quality is the 
fraction of cases for which the physician is cor- 
rect, often called "accuracy." Although we are 
all willing to accept that high accuracy is good 
(all other things being equal--and that's the 
catch), the number can be very misleading. In 
screening for a relatively rare disease, for 
example, one can be very accurate simply by 
ignoring all evidence and calling all cases nega- 
tive. If only 5% of patients have the disease in 
question, a physician who always blindly states 
that the disease is absent will be right 95% of 
the time! 

Accuracy is of limited usefulness as an index 
of diagnostic performance because disease prev- 
alence affects the resulting number strongly, 
and no mathematical correction for disease pre- 
valence can redeem this index in a meaningful 
way. One might be tempted to suppose that 
though this is true, accuracy should be meaning- 
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ful at least as an index for comparison of diag- 
nostic techniques applied to a given population 
in which disease prevalence is known and fixed. 
However, here too the index is limited. Two 
diagnostic modalities can yield equal accuracies 
but perform differently with respect to the types 
of correct and incorrect decisions they provide; 
the incorrect diagnoses from one might be al- 
most all false negative decisions (misses), while 
those from the other might be nearly all false 
positive decisions (false alarms), and clearly, 
the usefulness of these two tests for patient 
management could be quite different in various 
situations. 

Though accuracy provides a single simple 
number for diagnostic performance, it is often 
too simple and must be interpreted with 
considerable caution. The limitations of this 
index force us to introduce some complexity 
into our evaluation scheme: We must sort out 
the effect of disease prevalence, and we must 
score separately the various kinds of right and 
wrong diagnostic decisions. 

Sorting things out. Both of the obvious limi- 
tations of the accuracy index can be overcome 
by defining decision performance in terms of the 
pair of indices: 

Sensitivity 

[Number of True Positive (TP) decisions] 
[Number of actually positive cases] 

and 

Specificity 

[Number of True Negative (TN) decisions] 
[Number of actually negative cases] 

In effect, sensitivity and specificity represent 
two kinds of accuracy: the first for actually posi- 
tive cases and the second for actually negative 
cases. One must note carefully that the terms 
"positive" and "negative" in these definitions 
concern some particular disease state, which 
must be specified clearly in calculating and 
quoting sensitivity and specificity values. For 
simplicity, these indices require that all possible 
states of health and disease be classified into 
two categories. These categories can be defined 
in any way that is convenient and meaningful for 
the problem at hand, but they must be made ex- 
plicit. For example, patients could be classified 
as having one or more tumors (malignant or be- 

nign) or no tumor; as having malignant tumors 
or no malignant tumor (which could be benign 
tumor or no tumor), etc. 

Accuracy, or the fraction of the study popula- 
tion that is decided correctly, is related to 
sensitivity and specificity by the simple formula: 

Accuracy 

= [Sensitivity] x 
iraction of the study ] 

opulation that is actually 
ositive 

Fraction of the study 
+ [Specificity] x ]population that is actuall 

[_negative 

The reader should think through the proof of 
this relationship as a simple exercise in the sort 
of manipulation that is used repeatedly in our 
approach. Notice that accuracy is defined as: 

Accuracy = [No. correct decisions] 
[No. cases] 

SO 
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Hence the relationship is proven. A little 
arithmetic and a little common sense go a long 
way in this field! 

At this point we must introduce some addi- 
tional terminology that is commonly used in the 
approach we are taking. True positive fraction 
(TPF) is simply the same thing as sensitivity, 
and true negative fraction (TNF) is simply the 
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same as specificity. As one can see from the 
definitions of sensitivity and specificity, the 
terms TPF and TNF are more directly descrip- 
tive of the concepts involved and are a lot easier 
to remember. These new terms suggest two 
other definitions: 

False Positive 
fraction (FPF) 

False Negative 
fraction (FNF) 

[No. False Positive decisions] 
[No. actually negative cases] 

and 

[No. False Negative decisions] 
[No. actually positive cases] 

Note that FPF and FNF represent, respec- 
tively, the fractions of actually negative cases 
and of actually positive cases that are decided 
incorrectly. 

If we presume that all cases are diagnosed as 
either positive or negative (with respect to a 
specified disease), then for either actual state, 
the number of correct decisions plus the 
number of incorrect decisions must equal the 
number of cases with that actual state, Thus it 
is easy to show that the various fractions defined 
above must be related by 

TPF + FNF = 1 

and 

TNF + FPF = 1 

(The reader should prove these relationships as 
an exercise.) Because of these constraints, one 
can always compute FNF from knowledge of 
TPF, for example, so it is necessary only to 
specify one fraction from each of the above rela- 
tionships in order to fix all four types of decision 
fractions. 

One additional set of notations must be de- 
fined before we proceed. It is common to denote 
the four decision fractions defined above by us- 

ing the symbols of conditional probabilities, be- 
cause each decision fraction represents an esti- 
mate of the probability (or relative frequency) 
of a particular decision, given that (or con- 
ditional on the fact that) an individual case 
actually has a particular health or disease state. 
Let D represent the disease in question, and let 
T represent the result of a diagnostic test, i.e., a 
particular decision. Then FPF, for example, is 
equivalent to the conditional probability 
P(T+ I D-),  which is read as "the probability of 
a positive test, given the absence of disease." 
Similarly, TPF is often denoted by P(T+ [ D+); 
FNF by P(T-  I D+); and TNF by P(T-  I D-).  
Note that the use of conditional probability 
notation makes explicit the kinds of test results 
(decisions), T, and actual disease states, D, that 
are in the numerators and denominators of the 
definitions of the four kinds of decision frac- 
tions. Also, this notation emphasizes that all 
four decision fractions are conditional on (i.e., 
are normalized with respect to) actual disease 
states. 

Finally, the prevalence of disease in the popu- 
lation subjected to the diagnostic test (or for 
which diagnoses are to be made) can be 
represented by P(D+), the prior probability of 
the actual presence of the disease in a case from 
the population studied. Similarly, P ( D - ) =  
1 - P(D+) represents the prior probability that 
disease is actually absent in a case from the 
studied population. 

The relationships among the various quan- 
tities defined so far are summarized in Table 1, 
Note, in particular, the sense in which thinking 
of the conditional probabilities as fractions 
helps one to remember the definitions and the 
relationships. 

Apples and oranges. The concepts defined 
in the previous section allow us to sort out the 
effects of disease prevalence and to score 
separately the performance of a diagnostic test 

Table t .  Definitions of, and Relationships Among, the Various Decision Performance Indices Described in the Text 

Def in i t ions  Rela t ionsh ips 

T P F  = S e n s i t i v i t y  = P{T+ I D + )  
F P F  = 1 - ( S p e c i f i c i t y )  = P(T+ I D - )  
TNF = S p e c i f i c i t y  = P(T-  I D,-)  
F N F  = 1 - S e n s i t i v i t y  = P(T-  I D + )  
Disease P r e v a l e n c e  = P(D + ) 

T P F  + F N F  = P(T+ I D +  ) + P(T-- i D +  ) = I 
T N F  + F P F  = P ( T -  I D - )  + P(T+ I D - )  -- 1 
A c c u r a c y  = S e n s i t i v i t y  • P(D + ) 

+ S p e c i f i c i t y  x P ( D - )  
= T P F ,  P ( D + )  + T N F  x P ( D - )  
= P(T+ I D + )  • P (O+)  + P (T -  ! O - )  • P ( D - )  
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Table 2.  Dec i s i on  Data and Calculated Indices for Hypothetical Test A *  

Test Result 
(Diagnosis) 

Positive (T + ) Negative (T - )  Total Actual States 

Actua l  Sta te  

Posit ive (D + } 1 4 0  (TP) 6 0  (FN) 

Negat ive ( D - )  100  (FP) 9 0 0  (TN) 

Total  test  results (diagnosis) 2 4 0  posit ive decis ions 9 6 0  negat ive decis ions 

2 0 0  actual ly  posi t ive 

1 0 0 0  actual ly  negat ive 

"Total  cases, 1200 .  

Calculated indices: 

TPF = 1 4 0 / 2 0 0  = 0 . 7 0 :  FNF = 1 - TPF = 0 , 3 0  

FPF = 1 0 0 / 1 0 0 0  = 0 . 1 0 ;  TNF = 1 - FPF = 0 , 9 0  

P ( D + )  = 2 0 0 / 1 2 0 0  = 0 . 1 7 ;  P ( D - )  = 1 - P ( D + )  = 0 ,83  

�9 Accuracy = TPF x P ( D + )  + TNF • P ( D - )  = 0 ,87  

or a diagnostic decision maker with respect to 
actually positive and actually negative cases. 

In order to see how these concepts can be ap- 
plied to a collection of diagnostic decisions, 
consider the following hypothetical situation. 
Suppose that 1200 cases from a defined popula- 
tion have been subjected to some diagnostic test 
"A ,"  and that the actual health or disease state 
for each case has been determined by biopsy, 
follow-up, or some other means. Suppose that 
200 actually positive cases were ul t imately 
found in the population studied, and that the 
diagnostic test to be evaluated yielded 140 TP 
decisions, 60 FN decisions, 900 TN decisions, 
and 100 FP decisions. These data can be sum- 
marized by the "decision matrix" shown in Ta- 
ble 2. Note that summing across rows yields the 
number of cases with an actual health or disease 
state, while summing in a column yields the 
total number of times that the corresponding 
decision was made. Note also that the values for 
TNF,  FNF, and accuracy obtained using the 
relationships summarized in Table 1 are the 
same as those that would be obtained directly 
using the definitions of  these quantities. 

We see from the calculated indices that this 
test, as used here, is more accurate for actually 
negative cases than for actually positive cases, 
since TN F  is greater  than TPF- -even  though 
more actually negative than actually positive 
cases were decided incorrect ly.  The  la t te r  
observation is not paradoxical ,  but merely 
reflects the preponderance of actually negative 
cases in the population studied; recall that TPF,  
TNF,  etc. represent rates and not numbers of 
cases. 

The decision fractions allow us to predict how 
the accuracy index would change if this same 
test were applied (in the same way) to a popula- 
tion with a different prevalence of disease, 
P(D+). We see that if the various decision frac- 
tions are kept constant but P(D+) is increased 
to 0.6, for example, then accuracy would be 
(0.7) x (0.6) + (0.9) x (0.4) = 0.78. This value 
is lower because the test is less accurate fbr 
actually positive cases, and these have become 
more frequent. 

Often we wish to compare diagnostic tests. 
Suppose that the same population of cases used 
to evaluate test A was studied using a different 

Table 3. Decision Data and Calculated Indices for Hypothetical Case  B "  

Test Resutt 
(Diagnosis) 

Positive {T + ) Negative (T ) Total Actual States 

Actual  S ta te  

Posit ive (D + ) 

Negat ive ( D - )  

Total  test  results (diagnosis) 

8 0  (TP) 120  (FN) 2 0 0  actual ly  posi t ive 

4 0  (FP) 9 6 0  (TN) 1 0 0 0  actual ly  negat ive 

120  posit ive decis ions 1 0 8 0  negat ive decis ions 

*Tota l  cases, 1200 .  

Calculated indices: 

TPF = 8 0 / 2 0 0  = 0 . 4 0 ;  FNF = 1 - TPF = 0 , 6 0  

FPF = 4 0 / 1 0 0 0  = 0 . 0 4 ; T N F  = 1 - FPF = 0 9 6  

P ( D + )  = 2 0 0 / 1 2 0 0  = 0 . 1 7 ;  P ( D - )  = 1 - P ( D + )  = 0 . 8 3  

Accuracy = TPF x P ( D + )  + TNF x P ( D - )  = 0 .87  
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test, test B, with the results shown in Table 3. 
Comparison of Tables 2 and 3 clearly shows 
that these two tests are performing very 
differently--though the accuracy indices are the 
same! Test B is performing worse than test A 
for actually positive cases since TPF is lower 
and FNF is higher, but it is performing better 
for actually negative cases since TNF is higher 
and FPF is lower. The accuracy indices are 
equal because this trade-off in performance is 
balanced by the disease prevalence, P(D+), 
that we have used in our example. It should be 
clear that in many applied situations, tests A 
and B (as used here) are not of equal value; if 
the implications of a false positive decision for 
subsequent patient management are bad and 
overriding, then test A is worse, while if the im- 
plications of a false negative decision are bad 
(and overriding), then test B is worse. 

What to do? How can we balance the apples 
and oranges of TPF and FPF? We could at this 
point attempt to incorporate into our analysis 
"weights" for the good and bad of the various 
types  of co r rec t  and incorrec t  decisions.  
However, first let us consider a further com- 
plication, which will suggest a solution to the 
present dilemma. 

The implicit variable. In the use of almost 
any diagnostic test, test data do not necessarily 
fall into one of two obviously defined categories 
that can be uniquely ascribed to the presence or 
absence of the disease in question. 

For diagnostic tests that  yield a single 
number as a result (such as 24-hr thyroid 
uptake, various blood serum assays, etc.) the 
distributions of result values in actually positive 
and in actually negative patients overlap, and no 
single threshold or decision criterion can be 
found that separates the populations cleanly; 

otherwise the test would be perfect! Usually a 
threshold value must be chosen arbitrarily, and 
different choices will yield different frequencies 
for the various kinds of correct and incorrect 
decisions. For example, if high results tend to 
indicate the presence of disease but the distribu- 
tions of test result values in actually negative 
and in actually positive patients overlap (as 
shown in Fig. 1) then increasing the threshold 
value will make both false positive and true 
positive decisions less frequent, but will make 
both true negative and false negative decisions 
more frequent. A threshold value must be 
selected that is believed to yield an appropriate 
compromise among these gains and losses. 

Similarly, diagnostic tests that yield results 
that must be judged subjectively, such as imag- 
ing studies, usually require that some confi- 
dence threshold be established in the mind of 
the decision maker. If an image suggests the 
possibility of disease, how strong must that sus- 
picion be in order for the image to be called 
positive? The confidence threshold that an ob- 
server adopts undoubtedly depends on many 
things: his "style," his estimate of prior odds or 
probability, and his assessment of the conse- 
quences of the various possible correct and in- 
correct decisions. The concept of confidence 
threshold may be hard to quantify, but in most 
situations a confidence threshold can be varied, 
and the various decision fractions will vary with 
it. 

Recognizing the arbitrary nature of decision 
threshold selection might seem to complicate 
our problem even more. Aside from the "apples 
and oranges" of TPF and FPF, how can we 
compare tests A and B if the data in Tables 2 
and 3 could be changed simply by arbitrarily se- 
lecting different decision thresholds, or by using 

Fig. 1. Two hypothetical distributions of a 
quantity on which decisions are based, showing one 
possible decision threshold.  The condi t ional  
probability of each kind of decision is equal to the 
area under a distribution on one side of the threshold, 
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a different set of considerations in making a sub- 
jective decision? 

We resolve this dilemma by intentionally 
forcing the decision threshold to vary and by 
observing the resulting changes in the various 
decision fractions. 

INSIGHT PROVIDED BY ROC ANALYSIS 

Varying the Variable 

If we explicitly change the decision threshold 
by reinterpreting the results of a quantitative 
test using a new threshold of abnormality or by 
having the observer reread a set of images 
requiring that he be more, or less, certain that a 
case is positive before calling that case positive, 
then we will obtain a different set of decision 
fractions. If we change the decision threshold 
again to a new level, we will obtain yet again a 
different set of decision fractions. Since TP F  
and FPF together determine all four decision 
fractions (Table 1), we need only keep track of 
how these two fractions change as the decision 
threshold is varied. 

If we imagine that the distributions of test 
results (or, for subjective tests, the distributions 
of some quantity like "est imate of the likelihood 
of  disease, given the test information") are of 
the form shown in Fig. 1, then we see that 
lowering the decision threshold, for example, 
must increase both the TPF  and FPF. After 
some thought, one should realize that whatever 
the form of  the distributions, TPF  and FPF 
must increase or decrease together as the deci- 
sion threshold is changed. 

If  we explicitly change the decision threshold 
several times as described above, we will obtain 
several different pairs of  T P F  and FPF. These 
pairs can be plotted as the "y"  and "x"  coor- 
dinate values of points on a graph such as that 
shown in Fig. 2. The axes of this graph both 
range from zero to one because these are the 
limits of possible T P F  and FPF values. Since we 
can imagine repeatedly changing the decision 
threshold and obtaining more and more points 
on this graph, and since T P F  and FPF must al- 
ways change together in a way determined by 
the test result distributions, we see that the 
points representing all possible combinations of 
TP F  and FPF must lie on a curve. This curve is 
called the receiver operat ing character is t ic  
(ROC) curve for the diagnostic test, since it 

1,0 

z 
2 ~  
~7 

F-- 
t U ~  
> o -  O.S 
F- 

Q. 

t-- 

Fig. 2. 

~.~ LAX 

<__.MODERATE ~%~ 

~_. STRICT 
THRESHOLD 

A CONVENTIONAL j 
ROC CURVE 

~ 0  �9 0.5 
FALSE POSITIVE FRACTION 

[FPF OR P ( T + I D - ) ]  

1.O 

A typical conventional ROC curve, showing three 
possible operating points. 

describes the inherent detection characteristics 
of the test (or, for subjective studies, the ob- 
server-test  combination) and since the receiver 
of the test information can operate at any point 
on the curve by using an appropriate decision 
threshold. Fig. 2 shows three possible operating 
points that might correspond to use of a strict 
threshold (case called positive only if judged al- 
most  defini tely posit ive);  of  a m o d e r a t e  
threshold; or of a lax threshold (case called posi- 
tive if any suspicion of disease). 

Conven t iona l  ROC curves  o f  the  kind 
described here (in which two actual states are 
possible and in which two decision alternatives 
are available) inevitably must pass through the 
lower left corner (FPF --- O, TPF  = 0) of  the 
graph because all tests can be called negative, 
and through the upper right corner (FPF = I, 
TPF  = 1) of the graph because all tests can be 
called positive. Also, if the test provides in- 
formation to the decision maker, the inter- 
mediate points on a conventional ROC curve 
must be above the major (lower left to upper 
right) diagonal of the ROC space, because in 
that situation a positive decision should be more 
probable when a case is actually positive than 
when a case  is ac tua l ly  negat ive ,  i.e.,  
P(T+ I D+) should be g r e a t e r  than 
P(T+ I D-) .  Final ly ,  one  can show on 
theoretical grounds that if the decision maker  
uses available information in a proper way, the 
slope of the ROC curve must steadily decrease 
(i.e., it must become less steep) as one moves up 
and to the right on the curve. 
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What the Curve Means 

Essent ia l ly ,  a convent iona l  ROC curve  
describes the compromises that can be made 
between T P F  and FPF--and  hence among the 
relative frequencies of true positive, false posi- 
tive, true negative, and false negative deci- 
s i ons - a s  a decision threshold is varied. By ap- 
propriate choice of  the decision threshold, a de- 
cision maker or observer can operate  at (or 
near) any desired compromise that lies on the 
curve. Since the ROC curve is a graph of  TP F  
versus FPF, both of which are independent of 
disease prevalence, it does not depend on the 
prevalence of disease in the actual population to 
which the test may be applied.* Thus, ROC 
analysis provides a description of  disease de- 
tectability that is independent from both disease 
prevalence and decision threshold effects. 

We will discuss later the issue of optimal 
choice of an operating point on an ROC curve, 
but a few comments seem appropriate here. If 
disease prevalence is very low, then false posi- 
t ive f rac t ion  ( F P F )  must  be kep t  small;  
otherwise almost all positive decisions will be 
false positive decisions, and these diagnoses will 
burden the health care system and patients with 
many u n n e c e s s a r y  fol low-up examina t ions  
and/or  treatments.  Also, if consequences of a 
false positive decision are overridingly bad, 
perhaps because high-risk surgery would then 
be done unnecessarily, FPF must again be kept 
small. In either or both situations, the decision 
maker should operate on the lower left part of 
the ROC curve to keep FPF small, even at the 
expense of a low TPF and correspondingly high 
FNF. Conversely, if the same test with the 
same ROC curve is applied to a population in 
which disease prevalence is high and/or  in which 
the need for finding actually positive cases is of 
overriding importance, then the decision maker 
should adjust his decision threshold to operate 

*The curve may depend on the spectrum of  disease states 
classified as actually positive, however. If early disease is 
harder to detect  than advanced disease, for example, then 
the ROC curve will depend on the mixture of  early and ad- 
vanced actually positive cases studied. Thus, cases in the 
actually positive component of a study population must be 
chosen so as to represent the population at large to which 
the conclusions of the study will be applied. Similarly, the 
actually negative component should appropriately reflect 
the relative frequency of  normal variants. 

higher on the curve, accepting a higher FPF in 
order to keep TP F  high and FNF low. The ROC 
curve shows the extent to which FPF must be 
increased, for example, in order to increase 
TPF  to any required level. 

For diagnostic tests in which the test result 
must be judged subjectively, an ROC curve 
describes the decision performance of an ob- 
server-test  combination. Clearly, disease de- 
tectability can be poor if the test provides little 
information, or if the observer is not skilled in 
interpreting the information provided, or both. 
Because it gives an empirical description of de- 
cision performance, ROC analysis of subjective 
diagnostic tests  cannot reveal whether  the 
technology or the individual human is perform- 
ing badly. However, ROC analysis of the deci- 
sion performance of several individuals using a 
single diagnostic test can indicate the extent to 
which usefulness of the test depends on indi- 
vidual skill and/or  experience. ~ A more subtle 
issue related to performance of the decision 
maker, as opposed to the test, concerns his 
ability to hold his decision threshold fixed. 
Variations in use of the decision threshold from 
decision to decision cause decision performance 
to be degraded, with a consequent effect on the 
measured ROC curve. 2 This effect of threshold 
inconsistency on the measured ROC curve is 
appropriate and desirable, because any aspect 
of decision-making behavior that degrades deci- 
sion performance should be included in an empi- 
rical analysis of the observer-test  combination. 

Dilemmas Resolved 

We can now resolve the dilemmas that we 
faced in attempting to compare the hypothetical 
tests A and B on the basis of the decision perfor- 
mance data shown in Tables 2 and 3. From the 
perspective of ROC analysis, the combination 
of TP F  and FPF obtained there for each test 
merely represents one point on the ROC curve 
for each test. By varying the decision threshold 
for one test, we could change the combination of 
TPF  and FPF in such a way that the TPFs  for 
both tests are made equal, allowing comparison 
of the two resulting FPFs, or we could make the 
FPFs for both tests equal, permitting com- 
parison of  the two TPFs. More directly, we 
could measure the two curves and compare the 
curves themselves. 
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Fig. 3. The decision fractions resulting from the data of 
Figs, 1 and 2 plotted as points in an ROC space, with possi- 
ble ROC curves on which these points could lie, 

Figure 3 shows an ROC space which plots 
two points corresponding to the two combina- 
tions of TPF and FPF found for tests A and B 
on the basis of the data given in Tables 2 and 3. 
If we were to measure ROC curves for the two 
tests by (consistently) changing the two decision 
thresholds, the ROC curves might turn out to 
be those shown by the solid lines. If these curves 
were found, we could conclude that test A offers 
greater detectability of the disease in question 
than does test B, because tbr any given FPF, the 
TPF provided by test A is greater, while for any 
given TPF, the FPF provided by test A is less. 

Alternatively, we might find that the two 
ROC curves are (essentially) the same, such as 
the dotted curve shown in Fig. 3. In that case we 
would conclude that the two tests provide equal 
detectability of the disease in question, because 
the tests can be made to perform identically by 
choosing the two decision thresholds appro- 
priately. 

In general, we may conclude that better deci- 
sion or detection performance is indicated by an 
ROC curve that is higher and to the left in the 
ROC space. It is conceivable (though not com- 
mon) that two ROC curves may cross (and 
possibly recross). In such a case, the relative 
quality of decision performance provided by the 
two tests in question must be judged in the 
context of the diagnostic situation to which they 
will be applied, taking into account disease pre- 
valence and the costs and benefits of the conse- 
quences of the various types of decisions, as we 
describe later. 

PRACTICAL CONSIDERATIONS 

The Rating Method Trick 

As we have seen, an ROC curve can be 
generated by varying the decision threshold that 
defines the cut point between results ascribed to 
(though not necessarily due to) actually positive 
and actually negative cases. 

Data from a diagnostic test that yields a 
single quantitative value for each case can easily 
be rescored as positive or negative by using 
various decision thresholds. A number of points 
on the corresponding ROC curve can be plotted 
in this way, and a smooth curve can be drawn 
through or fitted statistically to the points. 

However, this approach is often impractical 
for diagnostic tests that must be interpreted 
subjectively because human observers may not 
find it possible to associate a continuum of nu- 
merical values with their subjective impressions 
of certainty. The simplest way of expressing a 
diagnostic decision is in terms of positive or 
negative, even though that decision may have 
been reached by comparison of a subjective im- 
pression with a decision threshold. These binary 
(two-valued: yes or no) decisions cannot be 
reanatyzed to determine what the decision 
maker would have said if he had used a different 
confidence threshold, however. Thus, an ROC 
curve can be generated from subjective yes-no 
response data only by requiring the decision 
maker to reread the entire set of cases several 
times, using a different decision threshold each 
time. This repeated yes-no approach is clearly 
burdensome and usually impractical. 

A practical technique for generating response 
data that can be used to plot an ROC curve in 
such a subjective judgment situation is called 
the "'rating method" and was developed in ex- 
perimental psychology.3 Essentially, the method 
represents a compromise between accepting a 
yes-no response and requiring that the decision 
maker select a value from a continuous scale to 
represent his confidence that the case in ques- 
tion is positive. Instead, the observer or decision 
maker is required to select one of several rat- 
ings or categories of confidence to represent his 
judgment, based on the information provided by 
the diagnostic test (and perhaps on other sup- 
plementary information available to him). 
These categories can be given qualitative labels 
such as: (1) definitely or almost definitely nega- 
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tive; (2) probably negative; (3) possibly positive; 
(4) probably positive; and (5) definitely or al- 
most definitely positive. The use of five cate- 
gories seems to represent a reasonable com- 
promise between the needs of ROC analysis and 
the precision with which an observer can be ex- 
pected to reproduce his ratings. We show below 
that use of N categories will yield (N - 1) non- 
trivial points on the ROC curve. 

The rating data obtained in this way are used 
to compute points on the ROC curve as follows: 
First, only those responses in the category cor- 
responding to highest certainty that a case is 
positive are scored as positive decisions, and the 
rest are scored as negative decisions. Thus, for 
the category labels listed above, only responses 
in category 5 would be scored as positive "deci- 
sions" at this stage of data analysis. These deci- 
sions are then compared with the actual 
presence or absence of disease for each case, 
and TPF and FPF are calculated. This combina- 
tion of TPF  and FPF is plotted as a point in the 
ROC space and can be interpreted as the ROC 
curve operating point corresponding to use of a 
strict decision threshold, with which a case is 
called positive if and only if the decision maker 
is certain, or almost certain, that the case in 
question is actually positive. 

Next, the rating scale response data are re- 
scored, this time interpreting as a positive deci- 
sion a response in either of the two categories 
corresponding to greatest certainty that a case 
is actually positive. Thus, for the labels listed 
above, a response in either category 5 or cate- 
gory 4 is scored as a positive decision. The 
resulting values for TPF and FPF are then cal- 
culated and plotted in the ROC space. This 
point represents an ROC curve operating point 
corresponding to the use of a less strict decision 
threshold, that is, corresponding to the situation 
in which the decision maker would call a case 
positive if he judges that the case is at least 
probably positive. 

This procedure is then repeated, successively 
interpreting as a positive decision a rating in any 
of the three categories of highest certainty that 
a case is positive (here, categories 5 or 4 or 3 are 
considered positive); then a rating in any of  the 
highest four categories, etc. When finally any 
response is scored as a positive decision, both 
TP F  and FPF become equal to 1.0, so the last 
plotted operating point is always in the upper 

right corner of the ROC graph. A smooth curve 
is then drawn through or fitted statistically to 
the plotted points to yield the measured ROC 
curve. 

Curve fitting. The rating method yields 
several points in the ROC space that represent 
experimental estimates of operating points on a 
single ROC curve. Because the number of 
cases that can be included in any ROC experi- 
ment is limited by practical considerations, and 
because human decisions are not always repro- 
ducible, each plotted point is subject to statis- 
tical error.  

Standard deviations of the variations that can 
be expected in any one plotted operating point 
(if the exper iment  were repeated  using a 
different set of the same number of  cases) can 
be estimated by the expressions? 

Standard Deviation of TPF* 

= . /  TPF • (1 - TPF)  
o. actually positive cases) - 1 

and 

Standard Deviation of FPF 

/(( FPF • (1 - FPF) 
= No. a ~ y  n~gga-fiv-e c-~-ses) - 1 

These expressions can be used to plot plus and 
minus one or two standard deviation error bars 
vertically and horizontally around the experi- 
mental points in the ROC space in order to 
provide a visual impression of the reliability of 
the points? Note that (1) the standard devia- 
tions depend on the position of a point in the 
ROC space, being largest when T P F  or FPF is 
close to 0.5; that (2) the standard deviation of 
TPF is inversely related to the number of 
actually positive cases used in the experiment; 
and that (3) the standard deviation of FPF is in- 
versely related to the number of actually nega- 
tive cases used. Since precision of T P F  and FPF 
are usually equally important, it is customary to 
a t t empt  to use roughly equal numbers  of  
actually positive and actually negative cases in 
an ROC experiment. These estimates of ROC 

*The denominators inside the square roots are of the 
form (N - 1) here rather than N to yield unbiased esti- 
mates of variance. In practice, this is usually a minor issue. 
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point reliability can be used as a guide in draw- 
ing a smooth curve that passes appropriately 
through or near the plotted points. Often a 
smooth curve fitted subjectively by eye provides 
an adequate estimate of  the full ROC curve. 

If a more objective curve-fitting procedure is 
desired, some assumption must be made re- 
garding the functional form of the curve to be fit 
to the data. A commonly used assumption in ex- 
perimental psychology is that the ROC curve is 
of  the same functional form as would be 
genera ted  from two Gaussian or " n o r m a l "  
probability distributions centered at different 
positions on the decision axis, and with possibly 
different standard deviations, as shown in Fig. 1. 
Each decision is assumed to be made by com- 
paring the decision variable outcome (position 
on the horizontal axis) with some decision 
threshold and deciding positive if the threshold 
is exceeded. Although the applicability of this 
underlying theoretical model cannot be proven 
even for idealized exper imental  situations, 
various theoretical arguments can be made in 
its behalf. The l i t e ra ture  of experimental  
psychology Contains much empirical evidence 
that curves of the functional form predicted by 
this model provide good fits to ROC data from 
experiments in which decisions are based on 
subjective judgments. 

The ROC curves predicted by this theoretical 
model depend on two parameters: the distance 
between the centers of the two normal distribu- 
tions on the decision axis (expressed in units of 
the standard deviation of one of the distribu- 
tions) and the ratio of the standard deviations of  
the two distributions. Various combinations of  
these two pa ramete r s  yield different ROC 
curves, and one combination can usually be 
found that fits experimental ROC data quite 
well. Conven ien t ly ,  the  ROC curves  are  
predicted by this theoretical model graph as 
straight lines if they are plotted on a pair of  
transformed coordinate axes that are linear not 
with respect to TPF  and FPF, but instead with 
respect to the standard deviates corresponding 
to the TPF  and FPF values.* Graph paper with 

*Consider a normal distribution with standard deviation 
equal to 1,0, centered on Z = 0. The transformed coor- 
dinates mentioned above represent the values of Z such that 
the areas under this distribution to the left of Z correspond 
to TPF and FPF, respectively. 

these t rans formed double probabili ty coor- 
dinate scales is available,t and can be used to 
plot the ROC data points in such a way that a 
straight line can be fit to the points. The slope 
and one axis intercept of this fitted straight line 
then correspond to the two parameters of the 
underlying theoretical model, and these can be 
used to summarize the detectability of disease 
described by the ROC data?  

If  an ob j ec t i ve  s ta t i s t ica l  curve- f i t t ing  
procedure is desired, conventional least-squares 
fitting of a straight line on a double-probability 
graph is not appropriate because the assump- 
tions implicit to conventional least-squares  
methods (equal variance vertically, no variance 
horizontally) are  not valid for ROC data.  
Instead, a special maximum likelihood curve- 
fitting computer program should be used, which 
finds the pair of model parameters that make 
the observed ROC data most likely (i.e., least 
unlikely). Different programs are available for 
ROC data generated in yes-no experiments 6 or 
in rating-method experiments/  

No fully satisfactory statistical technique has 
been developed as yet to test the significance of 
apparent differences between measured ROC 
curves. Perhaps the best method available at 
the present time is the testing of differences 
between areas under the curves fitted by the 
maximum- l ike l ihood  p r o c e d u r e  desc r ibed  
above. A promising approach not yet fully ex- 
plored involves testing the apparent differences 
between pairs of  curve parameters by means of 
the multivariate analysis of variance. 

Cases, Truth, and Common Sense 

A fundamental aspect of almost any objective 
approach to the evaluation of diagnostic deci- 
sion making (whether in terms of accuracy, 
sensitivity and specificity, or ROC analysis) is 
the need for a sufficient number of cases in 
which the actual state of health or disease has 
been determined. Diagnostic truth must be 
known in order to score the quality of each deci- 
sion, and enough cases must be used to ensure 
acceptable statistical precision in the measured 
performance indices. Although these require- 

t"Double Integrated Normal Chart," available as item 
Y4 23t from the Codex Book Co., P. O. Box 366, Norwood, 
Mass. 02062. 
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ments are sometimes tedious to satisfy in 
clinical situations, ROC analysis is no more de- 
manding in this regard than other objective 
methods of  evaluation analysis. In short, the 
quality of diagnostic decisions cannot be de- 
termined if the correct  answers are not known. 

The problem of  establishing " t r u t h "  is 
straightforward in evaluation studies that use 
artificial test samples or phantom images, but 
this problem can be exceedingly tedious and 
frustrating in studies employing actual clinical 
cases. The definition of truth is ultimately a 
philosophical issue, of course, and operational 
standards for diagnostic truth must be es- 
tabl ished for the  purposes  of  evalua t ion  
analysis; these must take into account the goals 
of the evaluation study, potential sources of 
bias, and common sense. In short, standards of 
truth need not be perfect, but they must be 
considerably more reliable than the tests to be 
evaluated; judgments of truth should be inde- 
pendent from information provided by the tests 
to be evaluated, and one must balance thought- 
ful reflection on the potential errors and difficul- 
ties of such evaluation studies against the useful 
(even if limited) information that they can 
provide. 

In the selection of cases to be included in an 
evaluation study, due consideration must be 
given to include an appropriate spectrum of 
disease characteristics in the sample case popu- 
lation, because the conclusions drawn from the 
study are applicable only to, and cannot be de- 
fined more specifically than, the sample popula- 
tion. s 

The various issues that should be considered 
in designing a study for the evaluation of diag- 
nostic medical imaging procedures  are dis- 
cussed in a general protocol currently in the fi- 
nal stages of preparation.* 

No simple answer exists to the question of 
how many cases are necessary for meaningful 
conclusions to be drawn from an ROC analysis 
of decision performance, but several issues 
should be considered. First, no mat ter  what 
means may be used to infer the significance of 

*This document is currently in preparation by Bolt 
Beranek and Newman, Inc., Cambridge, Mass. under Na- 
tional Cancer Institute Contract NOI-CB-64010 ("Stan- 
dard Protocol for Evaluation of Imaging Techniques in 
Cancer Diagnosis"; John A. Swets, Principal Investigator). 

apparent differences between ROC curves, the 
required precision of measured ROC points will 
depend on the magnitude of the differences that 
actually exist: More  cases are  needed to 
demonstrate subtle differences in diagnostic 
performance than gross differences. 

Second, statistical variations in ROC data 
and fitted ROC curves are due to at least two 
factors: the extent to which the limited number 
of cases used in an ROC experiment represents 
the total population of such cases at large, and 
the extent to which diagnostic test results and 
subjective diagnostic judgments are reproduci- 
ble. Although the cumulative effects of these 
two sources of variation can be expressed in 
terms of binomial or multinomial statistics and 
can be estimated by the expressions for stan- 
dard deviations quoted above, the relative mag- 
nitude of the individual effects has not been 
studied and their interaction is not understood. 
However, the fact that both of these two effects 
do occur unquestionably complicates the issue 
of interpreting apparent differences between 
measured ROC curves. Because of these two 
sources of statistical variation, an observed 
difference between the decision performance of 
two diagnostic tests acting on the same sample 
population may in fact be more significant than 
an assumption of sample independence would 
suggest, because if the limited case sample is 
atypically difficult for one test, it may be atypi- 
cally difficult for the other also; in this situation 
the ROC curves for the two tests should vary up 
and down together  if they are applied to 
different sample populations of the same limited 
size. Thus, error bars computed on the basis of  
the independent sample assumption may be un- 
duly pessimistic concerning the significance of 
differences between curves in this situation. 

Because no generally accepted statistical test 
yet exists for demonstrating the quantitative 
statistical significance of apparent differences 
between ROC curves, the number of cases re- 
qui red  to ach ieve  signif icance canno t  be 
predicted. This state of affairs is certainly un- 
satisfactory, and current theoretical efforts hold 
promise for better statistical techniques in the 
fu ture .  Meanwhi le ,  common  sense  and 
experience suggest that meaningful qualitative 
conclusions can be drawn from ROC experi- 
ments performed with as few as about 100 
clinical cases I or experimental images? 
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GENERALIZED ROC METHODS 

The conventional ROC methods that we have 
described apply to situations in which actual 
states of health and disease are grouped into 
two categories and in which two decision al- 
ternatives are available to the decision maker. 
In this section we sketch how these methods can 
be generalized to apply to more complicated de- 
cision-making situations. 

The most fundamental property of the ROC 
approach is that it describes the trade-offs that 
are available among the conditional frequencies 
of various types of correct and incorrect deci- 
sions. By viewing the approach in this broad 
way, we can see that a generalized ROC ap- 
proach would account for the ways in which the 
frequencies of certain types of decisions must 
vary with the frequencies of other types of deci- 
sions as one or more decision threshold is 
changed. 

Consider first the situation in which the deci- 
sion maker must not only call an actually posi- 
tive case positive, but must also state where the 
case is positive in order to receive credit for a 
fully true positive decision. If localization of 
disease to within the proper image quadrant is 
required, for example, and if disease can be 
present in at most one quadrant, then five 
actual states and decision alternatives are 
available: "no disease," "disease in upper left 
quadrant," etc. We have shown theoretically 
and experimentally ~~ that decision perfor- 
mance in this more complex task can be 
predicted from knowledge of the conventional 
ROC curve measured for the two-alternative 
detection-only task, and that the resulting 
generalized ROC curve is a curved line in three- 
dimensinal space, which can be plotted as two 
curves on a two-dimensional graph. 

Another situation of interest is that in which 
more than one lesion may be present, and in 
which the observer must, in effect, count the le- 
sions. We have shown that if the possible lesions 
are similar, decision performance in this 
multiple-signal task can again be predicted from 
knowledge of the conventional ROC curve 
(measured when zero or one lesion may be 
present), and that the generalized ROC curve is 
a curved line in multi-dimensional space, which 
can be plotted as a set of two-dimensional 
graphs. ~2 

These two studies have shown that decision 

performance in some muItialterative tasks 
employing medical images can be related 
uniquely and predictably to decision perfor- 
mance in a simple two-alternative task that is 
measured by a conventional ROC curve. Thus, 
in these situations the conventional ROC curve 
provides a sufficient conceptual and experi- 
mental description of decision performance. 

A common aspect of the tasks used in these 
two studies is that the decision maker can be 
assumed to base his selection of one of several 
decision alternatives on the repeated com- 
parison of a single kind of judgment against a 
single decision threshold. In the multiple-signal 
detection task, for example, he is assumed to 
try to detect lesions in various parts of an image 
by repeating a similar judgmental process and 
then adding up the number of lesions that he 
believes he has found. 

An appropriate theoretical model for what we 
might call a simultaneous detection and 
differential diagnosis task is less ctear. 9 For 
example, suppose that the decision maker is 
confronted with a population of cases, each one 
of which may be actually negative, positive with 
disease A, or positive with disease B. No fully 
general multialternative ROC approach is yet 
available to measure and describe decision 
performance in this task. An approach that may 
suffice at present is the measurement of three 
conventional ROC curves, either by grouping 
the actual states into two alternatives in the 
three possible ways, or by deleting cases with 
one actual state in each of three decision experi- 
ments. 

Theoretical and experimental efforts to deal 
with this important situation within the context 
of ROC analysis are continuing. 

IMPLICATIONS FOR MEDICAL DECISION 
MAKING 

In performing a diagnostic study, one pays a 
price (in terms of money and the risk of possible 
complications) to gain information that should 
be of benefit in subsequent patient manage- 
ment. In this section we use the perspective of 
ROC analysis to address three questions: "How 
can one balance the benefits of correct diag- 
nostic decisions against the costs of incorrect 
decisions? . . . .  How can one judge whether the in- 
formation purchased is worth the price paid?" 
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and "How can one evaluate combinations of 
diagnostic tests?" 

We admit at the outset that the conceptual 
approach we sketch here is overly simplistic in 
the sense that some complicated issues are 
ignored or dismissed casually, and in the sense 
that the quantitative data needed to implement 
calculations suggested by the approach may be 
hard to obtain. Still, real diagnostic situations 
do exist that  can be effectively modeled in the 
terms outlined here, and meaningful estimates 
of the required data can be made. The funda- 
mental  contr ibut ion of this approach ,  we 
believe, lies in the extent to which it forces us to 
focus our attention on the relevant issues in a 
sys temat ic  way. The approach can provide 
numbers, but more important,  it can provide 
insight. 

Cost~Ben efit Analysis 

Cons ide r  how we migh t  f o r m u l a t e  the  
average cost of the consequences of performing 
a diagnostic test. The term cost can be in- 
terpreted in a narrow sense of money or healthy 
patient days lost, or it can be thought of as com- 
binations of  various components. 13 

The average cost of the consequences of 
performing a diagnostic test must include, first, 
the (average) price we must pay to do the test; 
we can call this the "overhead cost" and denote 
it by Co. To this we must add the costs of the 
medical consequences of each type of diagnostic 
decision, and since we want an average cost, we 
must weigh each of these decision consequence 
costs by the probability that the type of decision 
in question occurs. Thus, for the two-alternative 
decision situation we can express the average 
cost (C) resulting from the use of the diagnostic 
test as: 

C = Co -4- CTp  x P(TP) + CTN • P (TN)  
+ CFp x P(FP)  + CFN X P (FN)  

where, for example, P(TP) is the probability 
that a true positive decision is made, and C Tp 
represents the average cost of the medical con- 
sequences of a t rue positive decision.* This kind 

*Benefits can be expressed as negative costs, if desired. 
At this point, however, it seems clearest to express all deci- 
sion outcomes in terms of costs. Note that the consequences 
of a TP decision, for example, usually represent a liability, 
though almost always a smaller liability than those of a FN 
decision. 

of expression can be extended easily to include 
mul t ia l te rna t ive  decision situations,  but we 
consider the two-alternative case here for sim- 
plicity. 

The probability of a true positive decision, 
P(TP), is equal to the probability that a case 
from the population studied is actually positive, 
P(D+), multiplied by the probability that an 
actually positive case will be diagnosed as posi- 
tive using the test in question, P ( T + I D + ) .  
Thus  we can r e p l a c e  P ( T P )  by 
P ( D + ) P ( T +  I D + ) .  S imi la r ly ,  P ( T N )  = 
P(D-)P(T- q D - ) ;  P (FP)  = P(D-)P 
(T+ I D - ) ;  and P(FN) = P(D+)P(T- I D+).  
Further,  from the relationships listed in Table 1, 
we know that  P ( T -  I D+)  = 1 - P(T+ I D + )  
and that  P ( T -  I D - )  = 1 - P(T+ I D - ) .  Thus, 
the expression above can be rewritten as: 

C = Co --4- CTp X P(D+)  • P(T+ I D+)  
+ CTN • P ( D - )  • [1 - P(T+ I D - ) ]  
+ CFp • P ( D - )  • P(T+ I n - )  
+ CFN • P(D+)  • [1 - P(T+ I n + ) ]  

or after some rearrangement  of terms: 

= - ([CFN - CT[, ] x P(D+)} • P(T+ I D + )  
+ t[CvP CrN] • P ( D - ) }  • P(T+ ] D - )  
+ {Co + CTN • P ( D - )  + CVN • P(D+)}  

Inspection of this expression reveals several 
fundamental issues. First, whatever the average 
decision consequence costs may be, the average 
diagnostic cost (C') increases or decreases with 
the overhead cost (Co). Thus, a new test that 
provides bet ter  decisions, and hence reduces de- 
cision consequence costs, may in fact increase 
diagnostic cost if its overhead cost is too high. 

Second, the average diagnostic cost (C) de- 
pends on both P ( T + [ D + )  and P ( T + t D - ) ,  
which are the same as TPF  and FPF and are the 
coordinates of an ROC curve. Since a decision 
m a k e r  can change  these  quan t i t i e s  
toge ther - - tha t  is, since he can move his operat-  
ing point along the ROC curve - -by  using a 
different decision threshold, average cost de- 
pends on the decision threshold used and usually 
can be made larger or smaller. Thus, in terms of 
cost-benefit  analysis, the best operating point 
on a given ROC curve is the operating point that 
minimizes average cost (and hence maximizes 
average benefit) in a particular applied diag- 
nostic situation. Note  that the above expression 
is of  the  fo rm C = k l P ( T + I D + )  + 
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k2P(T+ I D - )  + k3. By differentiating the 
expression, and setting dC = 0, one can show 
that this optimal operating point must occur 
where the curve slope is given by: 

I i O C  Curve ] 
lope at Best | P ( D - )  [CFp -- CTN ] 

perating Point] P(D+) x [CFN _ Cxv] 

Note that the best operating point on the ROC 
curve does not depend on the test overhead cost 
(Co) although the minimum average cost (Cmio) 
attainable at that point does depend on Co. 

In order to understand the effects of the de- 
cision-consequence costs and disease preva- 
lence on the optimal ROC operating point--and 
hence on the optimal compromise between TP F  
and FPF--recal l  that the slope of a conven- 
tional ROC curve is largest on the lower left 
portion of the curve and smallest on the upper 
right portion. 

To consider the effects of disease prevalance, 
note that if the disease in question is rare in the 
population studies, P(D+) will be much less 
than 1.0 and P ( D - )  = 1 - P(D+) will be nearly 
1.0. Thus, the ratio P ( D -  )/P(D +) will be large, 
and the decision maker should operate toward 
the lower left portion of his ROC curve (where 
TPF  is small but FPF is much smaller) by using 
a relatively strict decision threshold. This is 
necessary when disease is rare (in screening 
situations, for example) because otherwise al- 
most all positive decisions will be false positive 
decisions. Conversely, when the disease in ques- 
tion is common, so that P ( D - ) i s  small, the best 
operating point is toward the upper right part of 
the ROC curve--where TPF  is high but FPF is 
high also. Otherwise, in this situation almost all 
negative decisions would be false negative deci- 
sions.* 

To consider the effects of the various decision 
consequence costs, note that if the difference 
between the costs of a false positive and of a 
true negative decision, C FP -- C T N ,  is much 
greater than the difference between the costs of 

*It is of  some interest to note that  the accuracy index dis- 
cussed earlier is meaningful when it is appropriate to 
assume that CFp = CFN and CTN/= CTp, i.e., when the two 
kinds of wrong decisions are equally bad and the two kinds 
of correct answers are equally good. Then we see from the 
above expression that accuracy is maximized by operating 
on the curve where the slope equals P(D-)/P(D+). 

a false negative and of a true positive decision, 
Cry - -  C'rv (which might be the situation if 
treatment for the disease or further diagnostic 
tests were harmful to actually healthy patients 
but  of  l i t t le  benefi t  to ac tua l ly  d iseased  
patients), then the optimal curve slope is large. 
Thus, both TP F  and FPF are best kept small, 
because otherwise more harm would be done by 
the FP decisions than good would be done by the 
TP decisions. Conversely, if CvP - CTN is much 
less than CFN -- C-re, as would be true if treat- 
ment or further testing were relatively harmless 
for actually healthy patients but very beneficial 
to diseased patients, then the decision maker 
should be operating high and to the right on his 
ROC curve, and TP F  should be kept large, even 
at the expense of a large FPF. 

If one uses the expression above to find the 
operating point on an ROC curve that is optimal 
in a particular applied situation and then sub- 
stitutes the resulting optimal curve coordinates, 
P(T+ I D+) and P(T+ I D - ) ,  into the previous 
expression, one obtains the minimum possible 
average diagnostic cost (Cm~n) that is attainable 
on the ROC curve and hence attainable with the 
test it describes. Cmin c a n  then be used as an 
index to describe the utility of the test in an ap- 
plied situation. Since the Cm~n index takes into 
account both the cost of performing the test and 
also the costs of the decision consequences 
realized from the test, it provides a conceptually 
meaningful way of comparing tests so that the 
costs of the tests themselves (in terms of money 
and/or  risk) are balanced against the conse- 
quences of the decisions they allow. 

A slightly different perspective on this ROC 
approach to cost/benefit  analysis can be ob- 
tained by thinking in terms of the average net 
benefit (NB) of a diagnostic test, which we de- 
fine 9 as the amount by which using the test can 
reduce minimum average diagnostic cost: 

NB = Cmi  n (not using test) - C min (using test) 

In the most general situation, the two C-m~, can 
be obtained by the procedure outlined above. 
Two ROC curves are required: one measured 
using all diagnostic information available for 
each case up to the point in the diagnostic se- 
quence at which the test in question is to be em- 
ployed, and the other measured using this in- 
formation and also the results of the test in 
question. Average net benefit of the additional 
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test will be positive (greater than zero) if the 
average cost of the decision consequences is 
reduced by more than the additional diagnostic 
overhead cost, that is, if the diagnostic informa- 
tion is worth the price. 

At least one situation exists for which only a 
single ROC curve is required. If the decision to 
be made in the absence of the diagnostic test is 
negat ive  (as in sc reening  s i tua t ions ,  for 
example) then the average cost of not using the 
test is 

(not using test) = CTN • P(D-) 
-~- CFN X P(D+) 

and so average net benefit is given by 14 

= F N - -  CTp ] X P ( D + ) }  • P(T+ I D+ )  
C p- "(D-)} 

• P(T+ I D - )  - Co 

One can show that in this case average net 
benefit (NB) is maximized at the same point on 
the ROC curve for which average cost (C) is 
minimized. A graphical approach that can be 
used to find the optimal operating point has 
been published elsewhere.14 

Decision Analysis and Sequences of Tests 

Other papers in this seminar discuss decision 
analysis in some detail. Essentially, decision 
analysis provides a means for choosing the 
course through a decision tree that maximizes 
average utility--i.e., that maximizes NB or 
minimizes C. In the previous section, we dis- 
cussed how one can choose the best compromise 
between TP F  and FPF in order to maximize the 
average utility of decisions based on a single 
diagnostic test or a fixed combination of tests. 

Diagnostic tests  are rarely used alone. 
Instead, the results of several diagnostic tests 
are usually combined with clinical background 
information to decide the disease state of the 
patient or to decide that additional diagnostic 
tests should be performed. In order to choose 
the best sequence of diagnostic tests, that is, to 
optimize diagnostic strategy, one must recog- 
nize that TPF  and FPF for each diagnostic test 
usually can be changed together by changing 
the decision threshold for the test. Thus, the 
test result branching probabilities in a decision 
tree are not fixed, but can be varied by selecting 
different operating points on the corresponding 

ROC curves. Full optimization of  diagnostic 
strategy involves choosing not only the best se- 
quence of tests, but also the best operating point 
on the ROC curve for each test. 

A simple example illustrating this kind of full 
optimization has been published elsewhere. 14 
Suppose that we have available two diagnostic 
tests for the same disease, one with low 
overhead cost but providing only moderate de- 
tectabil i ty,  and another  with much higher 
ove rhead  cost  but  providing g r e a t e r  de- 
tectability. In terms of C or NB, should one of 
the tests be used alone, or should the cheaper, 
less definitive test  be used as a screening 
procedure, with the more expensive, more reli- 
able test used only on patients called positive by 
the first test? The answer depends, of  course, on 
disease prevalance, on the two overhead costs, 
on the set of decision consequence costs, and on 
the ROC curves for the two tests. The published 
example illustrates combinations of parameters 
that can yield different conclusions and shows 
that the optimal operating points on the two 
ROC curves depend on whether the tests are 
used alone or in combination. 

SUGGESTIONS FOR FURTHER READING 

Introductory discussions of ROC analysis for 
diagnostic evaluation have been published by 
Turner 15 and by McNeil and colleagues,~6' ~r and 
these articles are recommended for the addi- 
tional perspective that they provide. Another in- 
t r o d u c t o r y  a r t ic le  by Swets  ~ t r aces  the 
development of ROC analysis in experimental 
psychology and indicates applications in other 
fields. We have published elsewhere a partially 
technical discussion of the ROC approach to 
diagnostic evaluation that includes examples of 
the various techniques, 14 and also a concise 
summary with an extensive bibliography. 19 

A recent introductory book by Egan z~ clearly 
i l lus t r a t e s  the m a t h e m a t i c a l  re la t ionsh ips  
among various decision strategies,  decision 
variable distributions, and the corresponding 
ROC curves. Signal Detection Theory and Psy- 
chophysics by Green and Swets 3 continues as 
the standard comprehensive reference work on 
ROC techniques. Finally, although it does not 
consider the implications of ROC analysis for 
optimizing diagnostic strategies, a classic book 
by Raiffa 2! provides an excellent introduction to 
the principles of decision analysis. 
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